enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pumping lemma for context-free languages - Wikipedia

    en.wikipedia.org/wiki/Pumping_lemma_for_context...

    The pumping lemma for context-free languages (called just "the pumping lemma" for the rest of this article) describes a property that all context-free languages are guaranteed to have. The property is a property of all strings in the language that are of length at least p {\displaystyle p} , where p {\displaystyle p} is a constant—called the ...

  3. Ogden's lemma - Wikipedia

    en.wikipedia.org/wiki/Ogden's_lemma

    Ogden's lemma is often stated in the following form, which can be obtained by "forgetting about" the grammar, and concentrating on the language itself: If a language L is context-free, then there exists some number (where p may or may not be a pumping length) such that for any string s of length at least p in L and every way of "marking" p or more of the positions in s, s can be written as

  4. Pumping lemma - Wikipedia

    en.wikipedia.org/wiki/Pumping_lemma

    Pumping lemma for context-free languages, the fact that all sufficiently long strings in such a language have a pair of substrings that can be repeated arbitrarily many times, usually used to prove that certain languages are not context-free; Pumping lemma for indexed languages; Pumping lemma for regular tree languages

  5. Context-free grammar - Wikipedia

    en.wikipedia.org/wiki/Context-free_grammar

    Context-free grammars are a special form of Semi-Thue systems that in their general form date back to the work of Axel Thue. The formalism of context-free grammars was developed in the mid-1950s by Noam Chomsky, [3] and also their classification as a special type of formal grammar (which he called phrase-structure grammars). [4]

  6. Context-free language - Wikipedia

    en.wikipedia.org/wiki/Context-free_language

    The set of all context-free languages is identical to the set of languages accepted by pushdown automata, which makes these languages amenable to parsing.Further, for a given CFG, there is a direct way to produce a pushdown automaton for the grammar (and thereby the corresponding language), though going the other way (producing a grammar given an automaton) is not as direct.

  7. Pumping lemma for regular languages - Wikipedia

    en.wikipedia.org/wiki/Pumping_lemma_for_regular...

    By doing so, zero strings in have length greater than . The pumping lemma was first proven by Michael Rabin and Dana Scott in 1959, [1] and rediscovered shortly after by Yehoshua Bar-Hillel, Micha A. Perles, and Eli Shamir in 1961, as a simplification of their pumping lemma for context-free languages. [2] [3]

  8. Chomsky normal form - Wikipedia

    en.wikipedia.org/wiki/Chomsky_normal_form

    Every grammar in Chomsky normal form is context-free, and conversely, every context-free grammar can be transformed into an equivalent one [note 1] which is in Chomsky normal form and has a size no larger than the square of the original grammar's size.

  9. Formal grammar - Wikipedia

    en.wikipedia.org/wiki/Formal_grammar

    The language () = {} defined above is not a context-free language, and this can be strictly proven using the pumping lemma for context-free languages, but for example the language {} (at least 1 followed by the same number of 's) is context-free, as it can be defined by the grammar with = {}, = {,}, the start symbol, and the following ...