Search results
Results from the WOW.Com Content Network
The pumping lemma for context-free languages (called just "the pumping lemma" for the rest of this article) describes a property that all context-free languages are guaranteed to have. The property is a property of all strings in the language that are of length at least p {\displaystyle p} , where p {\displaystyle p} is a constant—called the ...
Pumping lemma for context-free languages, the fact that all sufficiently long strings in such a language have a pair of substrings that can be repeated arbitrarily many times, usually used to prove that certain languages are not context-free; Pumping lemma for indexed languages; Pumping lemma for regular tree languages
Illustration of the pumping lemma for regular automata Chomsky and Miller (1957) [ 15 ] used the pumping lemma : they guess a part v of an input string uvw and try to build a corresponding cycle into the automaton to be learned; using membership queries they ask, for appropriate k , which of the strings uw , uvvw , uvvvw , ..., uv k w also ...
Generally, for any language, the constructed automaton is a state automaton acceptor. However, it does not necessarily have finitely many states. The Myhill–Nerode theorem shows that finiteness is necessary and sufficient for language regularity.
In the theory of formal languages, the pumping lemma for regular languages is a lemma that describes an essential property of all regular languages. Informally, it says that all sufficiently long strings in a regular language may be pumped —that is, have a middle section of the string repeated an arbitrary number of times—to produce a new ...
The fact that this language is not context free can be proven using pumping lemma for context-free languages and a proof by contradiction, ...
The set of all context-free languages is identical to the set of languages accepted by pushdown automata, which makes these languages amenable to parsing.Further, for a given CFG, there is a direct way to produce a pushdown automaton for the grammar (and thereby the corresponding language), though going the other way (producing a grammar given an automaton) is not as direct.
Ogden's lemma is often stated in the following form, which can be obtained by "forgetting about" the grammar, and concentrating on the language itself: If a language L is context-free, then there exists some number (where p may or may not be a pumping length) such that for any string s of length at least p in L and every way of "marking" p or more of the positions in s, s can be written as