enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    In classical mechanics, for a body with constant mass, the (vector) acceleration of the body's center of mass is proportional to the net force vector (i.e. sum of all forces) acting on it (Newton's second law): = =, where F is the net force acting on the body, m is the mass of the body, and a is the center-of-mass acceleration.

  3. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    The concept of momentum plays a fundamental role in explaining the behavior of variable-mass objects such as a rocket ejecting fuel or a star accreting gas. In analyzing such an object, one treats the object's mass as a function that varies with time: m(t). The momentum of the object at time t is therefore p(t) = m(t)v(t).

  4. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    Here we use the relativistic expression for linear momentum: =, where = / /. with being an object's (rest) mass, speed, and c the speed of light in vacuum. Then kinetic energy is the total relativistic energy minus the rest energy : E K = E − m 0 c 2 = ( p c ) 2 + ( m 0 c 2 ) 2 − m 0 c 2 {\displaystyle E_{K}=E-m_{0}c^{2}={\sqrt {(p{\textrm ...

  5. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    The first of Newton's laws of motion states that an object's inertia keeps it in motion; since the object in the air has a velocity, it will tend to keep moving in that direction. A varying angular speed for an object moving in a circular path can also be achieved if the rotating body does not have a homogeneous mass distribution. [2]

  6. Motion - Wikipedia

    en.wikipedia.org/wiki/Motion

    The speed of light in vacuum is thus the upper limit for speed for all physical systems. In addition, the speed of light is an invariant quantity: it has the same value, irrespective of the position or speed of the observer. This property makes the speed of light c a natural measurement unit for speed and a fundamental constant of nature.

  7. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    Since linear motion is a motion in a single dimension, the distance traveled by an object in particular direction is the same as displacement. [4] The SI unit of displacement is the metre . [ 5 ] [ 6 ] If x 1 {\displaystyle x_{1}} is the initial position of an object and x 2 {\displaystyle x_{2}} is the final position, then mathematically the ...

  8. Coriolis force - Wikipedia

    en.wikipedia.org/wiki/Coriolis_force

    An air or water mass moving with speed subject only to the Coriolis force travels in a circular trajectory called an inertial circle. Since the force is directed at right angles to the motion of the particle, it moves with a constant speed around a circle whose radius R {\displaystyle R} is given by:

  9. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    where b is the force acting on the body per unit mass (dimensions of acceleration, misleadingly called the "body force"), and dm = ρ dV is an infinitesimal mass element of the body. Body forces and contact forces acting on the body lead to corresponding moments of those forces relative to a given point.