enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nucleic acid double helix - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_double_helix

    The double-helix model of DNA structure was first published in the journal Nature by James Watson and Francis Crick in 1953, [6] (X,Y,Z coordinates in 1954 [7]) based on the work of Rosalind Franklin and her student Raymond Gosling, who took the crucial X-ray diffraction image of DNA labeled as "Photo 51", [8] [9] and Maurice Wilkins, Alexander Stokes, and Herbert Wilson, [10] and base-pairing ...

  3. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    The two strands of DNA in a double helix can thus be pulled apart like a zipper, either by a mechanical force or high temperature. [27] As a result of this base pair complementarity, all the information in the double-stranded sequence of a DNA helix is duplicated on each strand, which is vital in DNA replication.

  4. Nucleic acid tertiary structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_tertiary...

    Three DNA conformations are believed to be found in nature, A-DNA, B-DNA, and Z-DNA. The "B" form described by James D. Watson and Francis Crick is believed to predominate in cells. [ 2 ] James D. Watson and Francis Crick described this structure as a double helix with a radius of 10 Å and pitch of 34 Å , making one complete turn about its ...

  5. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    B-DNA is the most common form of DNA in vivo and is a more narrow, elongated helix than A-DNA. Its wide major groove makes it more accessible to proteins. On the other hand, it has a narrow minor groove. B-DNA's favored conformations occur at high water concentrations; the hydration of the minor groove appears to favor B-DNA.

  6. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    This is essential for cell division during growth and repair of damaged tissues, while it also ensures that each of the new cells receives its own copy of the DNA. [5] The cell possesses the distinctive property of division, which makes replication of DNA essential. DNA is made up of a double helix of two complementary strands. DNA is often ...

  7. Triple-stranded DNA - Wikipedia

    en.wikipedia.org/wiki/Triple-stranded_DNA

    Triple-stranded DNA (also known as H-DNA or Triplex-DNA) is a DNA structure in which three oligonucleotides wind around each other and form a triple helix. In triple-stranded DNA, the third strand binds to a B-form DNA (via Watson–Crick base-pairing ) double helix by forming Hoogsteen base pairs or reversed Hoogsteen hydrogen bonds.

  8. A-DNA - Wikipedia

    en.wikipedia.org/wiki/A-DNA

    A-DNA is thought to be one of three biologically active double helical structures along with B-DNA and Z-DNA. It is a right-handed double helix fairly similar to the more common B-DNA form, but with a shorter, more compact helical structure whose base pairs are not perpendicular to the helix-axis as in B-DNA.

  9. Nucleic acid thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_thermodynamics

    For biological systems with water as a solvent, hydrophobic effect contributes and helps in formation of a helix. [8] Stacking is the main stabilizing factor in the DNA double helix. [9] Contribution of stacking to the free energy of the molecule can be experimentally estimated by observing the bent-stacked equilibrium in nicked DNA.