enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Contraposition - Wikipedia

    en.wikipedia.org/wiki/Contraposition

    In mathematics, proof by contrapositive, or proof by contraposition, is a rule of inference used in proofs, where one infers a conditional statement from its contrapositive. [15] In other words, the conclusion "if A, then B" is inferred by constructing a proof of the claim "if not B, then not A" instead. More often than not, this approach is ...

  3. Inverse (logic) - Wikipedia

    en.wikipedia.org/wiki/Inverse_(logic)

    In logic, an inverse is a type of conditional sentence which is an immediate inference made from another conditional sentence. More specifically, given a conditional sentence of the form , the inverse refers to the sentence . Since an inverse is the contrapositive of the converse, inverse and converse are logically equivalent to each other.

  4. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    Glossary of mathematical symbols. A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various ...

  5. Modus tollens - Wikipedia

    en.wikipedia.org/wiki/Modus_tollens

    Modus tollens is a mixed hypothetical syllogism that takes the form of "If P, then Q. Not Q. Therefore, not P." It is an application of the general truth that if a statement is true, then so is its contrapositive. The form shows that inference from P implies Q to the negation of Q implies the negation of P is a valid argument.

  6. Converse (logic) - Wikipedia

    en.wikipedia.org/wiki/Converse_(logic)

    In logic and mathematics, the converse of a categorical or implicational statement is the result of reversing its two constituent statements. For the implication P → Q, the converse is Q → P. For the categorical proposition All S are P, the converse is All P are S. Either way, the truth of the converse is generally independent from that of ...

  7. List of logic symbols - Wikipedia

    en.wikipedia.org/wiki/List_of_logic_symbols

    propositional logic, Boolean algebra, first-order logic. ⊥ {\displaystyle \bot } denotes a proposition that is always false. The symbol ⊥ may also refer to perpendicular lines. The proposition. ⊥ ∧ P {\displaystyle \bot \wedge P} is always false since at least one of the two is unconditionally false. ∀.

  8. Proof by contradiction - Wikipedia

    en.wikipedia.org/wiki/Proof_by_contradiction

    In logic, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition by showing that assuming the proposition to be false leads to a contradiction. Although it is quite freely used in mathematical proofs, not every school of mathematical thought accepts this kind of nonconstructive proof as universally ...

  9. Contradiction - Wikipedia

    en.wikipedia.org/wiki/Contradiction

    In modern formal logic and type theory, the term is mainly used instead for a single proposition, often denoted by the falsum symbol ; a proposition is a contradiction if false can be derived from it, using the rules of the logic. It is a proposition that is unconditionally false (i.e., a self-contradictory proposition).