Search results
Results from the WOW.Com Content Network
Summation, which includes both spatial summation and temporal summation, is the process that determines whether or not an action potential will be generated by the combined effects of excitatory and inhibitory signals, both from multiple simultaneous inputs (spatial summation), and from repeated inputs (temporal summation).
The muscle fibers belonging to one motor unit can be spread throughout part, or most of the entire muscle, depending on the number of fibers and size of the muscle. [ 2 ] [ 3 ] When a motor neuron is activated, all of the muscle fibers innervated by the motor neuron are stimulated and contract.
Depiction of smooth muscle contraction. Muscle contraction is the activation of tension-generating sites within muscle cells. [1] [2] In physiology, muscle contraction does not necessarily mean muscle shortening because muscle tension can be produced without changes in muscle length, such as when holding something heavy in the same position. [1]
The two ways that synaptic potentials can add up to potentially form an action potential are spatial summation and temporal summation. [5] Spatial summation refers to several excitatory stimuli from different synapses converging on the same postsynaptic neuron at the same time to reach the threshold needed to reach an action potential.
Temporal motor unit recruitment, or rate coding, deals with the frequency of activation of muscle fiber contractions. Consecutive stimulation on the motor unit fibers from the alpha motor neuron causes the muscle to twitch more frequently until the twitches "fuse" temporally.
Therefore, in order to achieve threshold and generate an action potential, the postsynaptic neuron has the capacity to add up all of the incoming EPSPs based on the mechanism of summation, which can occur in time and space. Temporal summation occurs when a particular synapse is stimulated at a high frequency, which causes the postsynaptic ...
In that study, an increase in muscle fiber conduction velocity was observed when there was a higher level of voluntary muscle contraction, which agrees with the gradual recruitment of higher-force muscle types. [16] In Wistar rats, it was found that cell size is the crucial property in determining neuronal recruitment. [17]
Owing to temporal summation (depolarization potentials spaced closely together in time so that they summate), however, cell membrane depolarization will periodically reach depolarization threshold and an action potential will fire, triggering contraction of the myocyte. [citation needed]