Search results
Results from the WOW.Com Content Network
Data mining is an interdisciplinary subfield of computer science and statistics with an overall goal of extracting information (with intelligent methods) from a data set and transforming the information into a comprehensible structure for further use.
In business, data mining is the analysis of historical business activities, stored as static data in data warehouse databases. The goal is to reveal hidden patterns and trends. Data mining software uses advanced pattern recognition algorithms to sift through large amounts of data to assist in discovering previously unknown strategic business ...
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
Text mining, text data mining (TDM) or text analytics is the process of deriving high-quality information from text.It involves "the discovery by computer of new, previously unknown information, by automatically extracting information from different written resources."
This data mining method has been explored in different fields including disease diagnosis, market basket analysis, retail industry, higher education, and financial analysis. In retail, affinity analysis is used to perform market basket analysis, in which retailers seek to understand the purchase behavior of customers.
Sentiment analysis (also known as opinion mining or emotion AI) is the use of natural language processing, text analysis, computational linguistics, and biometrics to systematically identify, extract, quantify, and study affective states and subjective information.
The outer circle in the diagram symbolizes the cyclic nature of data mining itself. A data mining process continues after a solution has been deployed. The lessons learned during the process can trigger new, often more focused business questions, and subsequent data mining processes will benefit from the experiences of previous ones.
Orange, an open-source data mining and machine learning software suite. Python, an open-source programming language widely used in data mining and machine learning. R, an open-source programming language for statistical computing and graphics. Together with Python one of the most popular languages for data science.