Search results
Results from the WOW.Com Content Network
PyTorch Lightning is an open-source Python library that provides a high-level interface for PyTorch, a popular deep learning framework. [1] It is a lightweight and high-performance framework that organizes PyTorch code to decouple research from engineering, thus making deep learning experiments easier to read and reproduce.
Differential dynamic programming (DDP) is an optimal control algorithm of the trajectory optimization class. The algorithm was introduced in 1966 by Mayne [1] and subsequently analysed in Jacobson and Mayne's eponymous book. [2] The algorithm uses locally-quadratic models of the dynamics and cost functions, and displays quadratic convergence ...
In September 2022, Meta announced that PyTorch would be governed by the independent PyTorch Foundation, a newly created subsidiary of the Linux Foundation. [ 24 ] PyTorch 2.0 was released on 15 March 2023, introducing TorchDynamo , a Python-level compiler that makes code run up to 2x faster, along with significant improvements in training and ...
The torch package also simplifies object-oriented programming and serialization by providing various convenience functions which are used throughout its packages. The torch.class(classname, parentclass) function can be used to create object factories ().
DDP-316, family of minicomputer systems, including DDP-116, DDP-516, DDP-716. Differential dynamic programming, a second-order algorithm for trajectory optimization; Digital DawgPound, a hacker group; Disc Description Protocol, a generic disc image file format; Distributed Data Processing, a 1970s term referring to one of IBM's combined offerings
Distributed data processing. Distributed data processing [1] (DDP) [2] was the term that IBM used for the IBM 3790 (1975) and its successor, the IBM 8100 (1979). Datamation described the 3790 in March 1979 as "less than successful." [3] [4] Distributed data processing was used by IBM to refer to two environments: IMS DB/DC; CICS/DL/I [5] [6]
The Data Distribution Service (DDS) for real-time systems is an Object Management Group (OMG) machine-to-machine (sometimes called middleware or connectivity framework) standard that aims to enable dependable, high-performance, interoperable, real-time, scalable data exchanges using a publish–subscribe pattern.
Diffusion models were introduced in 2015 as a method to learn a model that can sample from a highly complex probability distribution. They used techniques from non-equilibrium thermodynamics, especially diffusion. [15] Consider, for example, how one might model the distribution of all naturally-occurring photos.