Search results
Results from the WOW.Com Content Network
Difference between Z-test and t-test: Z-test is used when sample size is large (n>50), or the population variance is known. t-test is used when sample size is small (n<50) and population variance is unknown. There is no universal constant at which the sample size is generally considered large enough to justify use of the plug-in test.
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]
The Z-factor defines a characteristic parameter of the capability of hit identification for each given assay. The following categorization of HTS assay quality by the value of the Z-Factor is a modification of Table 1 shown in Zhang et al. (1999); [2] note that the Z-factor cannot exceed one.
Suppose we are using a Z-test to analyze the data, where the variances of the pre-treatment and post-treatment data σ 1 2 and σ 2 2 are known (the situation with a t-test is similar). The unpaired Z-test statistic is ¯ ¯ / + /, The power of the unpaired, one-sided test carried out at level α = 0.05 can be calculated as follows:
Comparison of the various grading methods in a normal distribution, including: standard deviations, cumulative percentages, percentile equivalents, z-scores, T-scores. In statistics, the standard score is the number of standard deviations by which the value of a raw score (i.e., an observed value or data point) is above or below the mean value of what is being observed or measured.
Z tables use at least three different conventions: Cumulative from mean gives a probability that a statistic is between 0 (mean) and Z. Example: Prob(0 ≤ Z ≤ 0.69) = 0.2549. Cumulative gives a probability that a statistic is less than Z. This equates to the area of the distribution below Z. Example: Prob(Z ≤ 0.69) = 0.7549. Complementary ...
The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.
An f-test pdf with d1 and d2 = 10, at a significance level of 0.05. (Red shaded region indicates the critical region) An F-test is a statistical test that compares variances. It's used to determine if the variances of two samples, or if the ratios of variances among multiple samples, are significantly different.