enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. B-spline - Wikipedia

    en.wikipedia.org/wiki/B-spline

    A B-spline function is a combination of flexible bands that is controlled by a number of points that are called control points, creating smooth curves. These functions are used to create and manage complex shapes and surfaces using a number of points. B-spline function and Bézier functions are applied extensively in shape optimization methods. [5]

  3. Spline (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Spline_(mathematics)

    The mathematical spline that most closely models the flat spline is a cubic (n = 3), twice continuously differentiable (C 2), natural spline, which is a spline of this classical type with additional conditions imposed at endpoints a and b.

  4. Non-uniform rational B-spline - Wikipedia

    en.wikipedia.org/wiki/Non-uniform_rational_B-spline

    Non-uniform rational basis spline (NURBS) is a mathematical model using basis splines (B-splines) that is commonly used in computer graphics for representing curves and surfaces. It offers great flexibility and precision for handling both analytic (defined by common mathematical formulae ) and modeled shapes .

  5. De Boor's algorithm - Wikipedia

    en.wikipedia.org/wiki/De_Boor's_algorithm

    In the mathematical subfield of numerical analysis, de Boor's algorithm [1] is a polynomial-time and numerically stable algorithm for evaluating spline curves in B-spline form. It is a generalization of de Casteljau's algorithm for Bézier curves. The algorithm was devised by German-American mathematician Carl R. de Boor. Simplified ...

  6. Spline interpolation - Wikipedia

    en.wikipedia.org/wiki/Spline_interpolation

    In the mathematical field of numerical analysis, spline interpolation is a form of interpolation where the interpolant is a special type of piecewise polynomial called a spline. That is, instead of fitting a single, high-degree polynomial to all of the values at once, spline interpolation fits low-degree polynomials to small subsets of the ...

  7. Bézier surface - Wikipedia

    en.wikipedia.org/wiki/Bézier_surface

    Bézier surfaces are a species of mathematical spline used in computer graphics, computer-aided design, and finite element modeling. As with Bézier curves, a Bézier surface is defined by a set of control points. Similar to interpolation in many respects, a key difference is that the surface does not, in general, pass through the central ...

  8. Akima spline - Wikipedia

    en.wikipedia.org/wiki/Akima_spline

    In applied mathematics, an Akima spline is a type of non-smoothing spline that gives good fits to curves where the second derivative is rapidly varying. [1] The Akima spline was published by Hiroshi Akima in 1970 from Akima's pursuit of a cubic spline curve that would appear more natural and smooth, akin to an intuitively hand-drawn curve.

  9. Fbsp wavelet - Wikipedia

    en.wikipedia.org/wiki/Fbsp_wavelet

    O. Cho, M-J. Lai, A Class of Compactly Supported Orthonormal B-Spline Wavelets in: Splines and Wavelets, Athens 2005, G Chen and M-J Lai Editors pp. 123–151. M. Unser, Ten Good Reasons for Using Spline Wavelets, Proc. SPIE, Vol.3169, Wavelets Applications in Signal and Image Processing, 1997, pp. 422–431.