Search results
Results from the WOW.Com Content Network
The general structure of a phosphite ester showing the lone pairs on the P. In organic chemistry, a phosphite ester or organophosphite usually refers to an organophosphorous compound with the formula P(OR) 3. They can be considered as esters of an unobserved tautomer phosphorous acid, H 3 PO 3, with the simplest example being trimethylphosphite ...
Phosphite esters with tertiary alkyl halide groups can undergo the reaction, which would be unexpected if only an S N 2 mechanism was operating. Further support for this S N 1 type mechanism comes from the use of the Arbuzov reaction in the synthesis of neopentyl halides, a class of compounds that are notoriously unreactive towards S N 2 reactions.
Phosphites, sometimes called phosphite esters, have the general structure P(OR) 3 with oxidation state +3. Such species arise from the alcoholysis of phosphorus trichloride: PCl 3 + 3 ROH → P(OR) 3 + 3 HCl. The reaction is general, thus a vast number of such species are known.
The Perkow reaction is an organic reaction in which a trialkyl phosphite ester reacts with a haloketone to form a dialkyl vinyl phosphate and an alkyl halide. [1] The Perkow reaction
The Horner–Wadsworth–Emmons (HWE) reaction is a chemical reaction used in organic chemistry of stabilized phosphonate carbanions with aldehydes (or ketones) to produce predominantly E-alkenes. [1] The Horner–Wadsworth–Emmons reaction. In 1958, Leopold Horner published a modified Wittig reaction using phosphonate-stabilized carbanions.
The Knorr pyrrole synthesis is a widely used chemical reaction that synthesizes substituted pyrroles (3). [1] [2] [3] The method involves the reaction of an α-amino-ketone (1) and a compound containing an electron-withdrawing group (e.g. an ester as shown) α to a carbonyl group (2). [4] The Knorr pyrrole synthesis
Triethyl phosphite (TEP) is an organophosphorus compound, specifically a phosphite ester, with the formula P(OCH 2 CH 3) 3, often abbreviated P(OEt) 3. It is a colorless, malodorous liquid. It is used as a ligand in organometallic chemistry and as a reagent in organic synthesis.
Diethyl phosphite can add across unsaturated groups via a hydrophosphonylation reaction. For example, it adds to aldehydes in a manner similar to the Abramov reaction: (C 2 H 5 O) 2 P(O)H + RCHO → (C 2 H 5 O) 2 P(O)CH(OH)R. It can also add to imines in the Pudovik reaction and Kabachnik–Fields reaction, [13] in both cases forming ...