Search results
Results from the WOW.Com Content Network
Rearranging yields: = + . This has the same form as an equation for a straight line: y = a x + b , {\displaystyle y=ax+b,} where x is the reciprocal of T . So, when a reaction has a rate constant obeying the Arrhenius equation, a plot of ln k versus T −1 gives a straight line, whose slope and intercept can be used to determine E a and ...
Arrhenius plot. In chemical kinetics, an Arrhenius plot displays the logarithm of a reaction rate constant, ( , ordinate axis) plotted against reciprocal of the temperature ( , abscissa). [1] Arrhenius plots are often used to analyze the effect of temperature on the rates of chemical reactions. For a single rate-limited thermally activated ...
Diffusion-controlled (or diffusion-limited) reactions are reactions in which the reaction rate is equal to the rate of transport of the reactants through the reaction medium (usually a solution). [1] The process of chemical reaction can be considered as involving the diffusion of reactants until they encounter each other in the right ...
F.R. Larson and J. Miller proposed that creep rate could adequately be described by the Arrhenius type equation: r = A ⋅ e − Δ H / ( R ⋅ T ) {\displaystyle r=A\cdot e^{-\Delta H/(R\cdot T)}} Where r is the creep process rate, A is a constant, R is the universal gas constant , T is the absolute temperature , and Δ H {\displaystyle \Delta ...
In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base.It can be used to determine pH via titration.Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
However, the Arrhenius equation was derived from experimental data and models the macroscopic rate using only two parameters, irrespective of the number of transition states in a mechanism. In contrast, activation parameters can be found for every transition state of a multistep mechanism, at least in principle.
Pre-exponential factor. In chemical kinetics, the pre-exponential factor or A factor is the pre-exponential constant in the Arrhenius equation (equation shown below), an empirical relationship between temperature and rate coefficient. It is usually designated by A when determined from experiment, while Z is usually left for collision frequency.