Search results
Results from the WOW.Com Content Network
The envelope thus generalizes the concept of a constant amplitude into an instantaneous amplitude. The figure illustrates a modulated sine wave varying between an upper envelope and a lower envelope. The envelope function may be a function of time, space, angle, or indeed of any variable. Envelope for a modulated sine wave.
Mathematically, the derivatives of the Gaussian function can be represented using Hermite functions. For unit variance, the n-th derivative of the Gaussian is the Gaussian function itself multiplied by the n-th Hermite polynomial, up to scale. Consequently, Gaussian functions are also associated with the vacuum state in quantum field theory.
A looped animation of a wave packet propagating without dispersion: the envelope is maintained even as the phase changes. In physics, a wave packet (also known as a wave train or wave group) is a short burst of localized wave action that travels as a unit, outlined by an envelope.
Created Date: 8/30/2012 4:52:52 PM
The Gaussian function has a 1/e 2 diameter (2w as used in the text) about 1.7 times the FWHM.. At a position z along the beam (measured from the focus), the spot size parameter w is given by a hyperbolic relation: [1] = + (), where [1] = is called the Rayleigh range as further discussed below, and is the refractive index of the medium.
The carrier-envelope phase (CEP) or carrier-envelope offset (CEO) phase is an important feature of an ultrashort laser pulse and gains significance with decreasing pulse duration, in a regime where the pulse consists of a few wavelengths. Physical effects depending on the carrier-envelope phase fall into the category of highly nonlinear optics.
The Morlet wavelet filtering process involves transforming the sensor's output signal into the frequency domain. By convolving the signal with the Morlet wavelet, which is a complex sinusoidal wave with a Gaussian envelope, the technique allows for the extraction of relevant frequency components from the signal.
Ideal line shapes include Lorentzian, Gaussian and Voigt functions, whose parameters are the line position, maximum height and half-width. [1] Actual line shapes are determined principally by Doppler, collision and proximity broadening. For each system the half-width of the shape function varies with temperature, pressure (or concentration) and