Ads
related to: explain components of a laser
Search results
Results from the WOW.Com Content Network
Schematic diagram of a typical laser, showing the three major parts. A laser is constructed from three principal parts: An energy source (usually referred to as the pump or pump source), A gain medium or laser medium, and; Two or more mirrors that form an optical resonator.
LASER notebook: First page of the ... Silicon is the material of choice for integrated circuits, and so electronic and silicon photonic components (such as optical ...
Gould suggested that, by pulsing the laser, peak outputs as high as a megawatt could be produced. [11] Components of original ruby laser. As time went on, many scientists began to doubt the usefulness of any color ruby as a laser medium. Maiman, too, felt his own doubts, but, being a very "single-minded person," he kept working on his project ...
Types of two-mirror optical cavities, with mirrors of various curvatures, showing the radiation pattern inside each cavity. Light confined in a resonator will reflect multiple times from the mirrors, and due to the effects of interference, only certain patterns and frequencies of radiation will be sustained by the resonator, with the others being suppressed by destructive interference.
The active laser medium (also called a gain medium or lasing medium) is the source of optical gain within a laser. The gain results from the stimulated emission of photons through electronic or molecular transitions to a lower energy state from a higher energy state previously populated by a pump source. Examples of active laser media include:
Chemical lasers are powered by a chemical reaction and can achieve high powers in continuous operation. For example, in the hydrogen fluoride laser (2.7–2.9 μm) and the deuterium fluoride laser (3.8 μm) the reaction is the combination of hydrogen or deuterium gas with combustion products of ethylene in nitrogen trifluoride.
Mode locking is a technique in optics by which a laser can be made to produce pulses of light of extremely short duration, on the order of picoseconds (10 −12 s) or femtoseconds (10 −15 s). A laser operated in this way is sometimes referred to as a femtosecond laser, for example, in modern refractive surgery.
A chemical laser is a laser that obtains its energy from a chemical reaction. Chemical lasers can reach continuous wave output with power reaching to megawatt levels. They are used in industry for cutting and drilling.
Ads
related to: explain components of a laser