enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3.

  3. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .

  4. Arithmetico-geometric sequence - Wikipedia

    en.wikipedia.org/wiki/Arithmetico-geometric_sequence

    In mathematics, an arithmetico-geometric sequence is the result of element-by-element multiplication of the elements of a geometric progression with the corresponding elements of an arithmetic progression. The nth element of an arithmetico-geometric sequence is the product of the nth element of an arithmetic sequence and the nth element of a ...

  5. 1 + 2 + 3 + 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    The nth partial sum of the series is the triangular number = = (+), which increases without bound as n goes to infinity. Because the sequence of partial sums fails to converge to a finite limit, the series does not have a sum.

  6. Geometric distribution - Wikipedia

    en.wikipedia.org/wiki/Geometric_distribution

    The geometric distribution is the discrete probability distribution that describes when the first success in an infinite sequence of independent and identically distributed Bernoulli trials occurs. Its probability mass function depends on its parameterization and support .

  7. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    An arithmetico-geometric series is a series that has terms which are each the product of an element of an arithmetic progression with the corresponding element of a geometric progression. Example: 3 + 5 2 + 7 4 + 9 8 + 11 16 + ⋯ = ∑ n = 0 ∞ ( 3 + 2 n ) 2 n . {\displaystyle 3+{5 \over 2}+{7 \over 4}+{9 \over 8}+{11 \over 16}+\cdots =\sum ...

  8. 1 + 2 + 4 + 8 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_4_%2B_8_%2B_%E...

    In mathematics, 1 + 2 + 4 + 8 + ⋯ is the infinite series whose terms are the successive powers of two. As a geometric series, it is characterized by its first term, 1, and its common ratio, 2. As a series of real numbers it diverges to infinity, so the sum of this series is infinity.

  9. Harmonic series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_series_(mathematics)

    [1] [2] Every term of the harmonic series after the first is the harmonic mean of the neighboring terms, so the terms form a harmonic progression; the phrases harmonic mean and harmonic progression likewise derive from music. [2] Beyond music, harmonic sequences have also had a certain popularity with architects.