Search results
Results from the WOW.Com Content Network
The concept was first introduced by S. Pancharatnam [1] as geometric phase and later elaborately explained and popularized by Michael Berry in a paper published in 1984 [2] emphasizing how geometric phases provide a powerful unifying concept in several branches of classical and quantum physics.
There are several important aspects of this generalization of Berry's phase: 1) Instead of the parameter space for the original Berry phase, this Ning-Haken generalization is defined in phase space; 2) Instead of the adiabatic evolution in quantum mechanical system, the evolution of the system in phase space needs not to be adiabatic.
The Hannay angle is defined in the context of action-angle coordinates.In an initially time-invariant system, an action variable is a constant. After introducing a periodic perturbation (), the action variable becomes an adiabatic invariant, and the Hannay angle for its corresponding angle variable can be calculated according to the path integral that represents an evolution in which the ...
Trigonal bipyramidal molecular shape ax = axial ligands (on unique axis) eq = equatorial ligand (in plane perpendicular to unique axis). The Berry mechanism, or Berry pseudorotation mechanism, is a type of vibration causing molecules of certain geometries to isomerize by exchanging the two axial ligands (see the figure) for two of the equatorial ones.
The one-dimensional integrals can be generalized to multiple dimensions. [2] (+) = ()Here A is a real positive definite symmetric matrix.. This integral is performed by diagonalization of A with an orthogonal transformation = = where D is a diagonal matrix and O is an orthogonal matrix.
† can for example be seen to add one particle, because it will add 1 to the eigenvalue of the a-particle number operator, and the momentum of that particle ought to be p since the eigenvalue of the vector-valued momentum operator increases by that much. For these derivations, one starts out with expressions for the operators in terms of the ...
Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. [1] In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the symplectic form should allow one to obtain a vector field describing the flow of the system from the differential of a ...
The superformula is a generalization of the superellipse and was proposed by Johan Gielis in 2003. [1] Gielis suggested that the formula can be used to describe many complex shapes and curves that are found in nature.