enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spinon - Wikipedia

    en.wikipedia.org/wiki/Spinon

    The electron can always be theoretically considered as a bound state of the three, with the spinon carrying the spin of the electron, the orbiton carrying the orbital location and the holon carrying the charge, but in certain conditions they can behave as independent quasiparticles.

  3. Spin (physics) - Wikipedia

    en.wikipedia.org/wiki/Spin_(physics)

    Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. [1] [2]: 183–184 Spin is quantized, and accurate models for the interaction with spin require relativistic quantum mechanics or quantum field theory.

  4. Spin quantum number - Wikipedia

    en.wikipedia.org/wiki/Spin_quantum_number

    The atom would then be pulled toward or away from the stronger magnetic field a specific amount, depending on the value of the valence electron's spin. When the spin of the electron is ⁠+ + 1 / 2 ⁠ the atom moves away from the stronger field, and when the spin is ⁠− + 1 / 2 ⁠ the atom moves toward it. Thus the beam of silver atoms is ...

  5. List of particles - Wikipedia

    en.wikipedia.org/wiki/List_of_particles

    The graviton must be a spin-2 boson because the source of gravitation is the stress–energy tensor, a second-order tensor (compared with electromagnetism's spin-1 photon, the source of which is the four-current, a first-order tensor). Additionally, it can be shown that any massless spin-2 field would give rise to a force indistinguishable from ...

  6. Gyromagnetic ratio - Wikipedia

    en.wikipedia.org/wiki/Gyromagnetic_ratio

    An example for such a particle [9] is the spin ⁠ 1 / 2 ⁠ companion to spin ⁠ 3 / 2 ⁠ in the D (½,1) ⊕ D (1,½) representation space of the Lorentz group. This particle has been shown to be characterized by g = ⁠− + 2 / 3 ⁠ and consequently to behave as a truly quadratic fermion.

  7. Electron pair - Wikipedia

    en.wikipedia.org/wiki/Electron_pair

    In both cases a bond is created by the formation of an electron pair. Because electrons are fermions, the Pauli exclusion principle forbids these particles from having all the same quantum numbers. Therefore, for two electrons to occupy the same orbital, and thereby have the same orbital quantum number, they must have different spin quantum ...

  8. Rotation around a fixed axis - Wikipedia

    en.wikipedia.org/wiki/Rotation_around_a_fixed_axis

    Rotation around a fixed axis or axial rotation is a special case of rotational motion around an axis of rotation fixed, stationary, or static in three-dimensional space.This type of motion excludes the possibility of the instantaneous axis of rotation changing its orientation and cannot describe such phenomena as wobbling or precession.

  9. Spin–orbit interaction - Wikipedia

    en.wikipedia.org/wiki/Spin–orbit_interaction

    The spin magnetic moment of the electron is =, where is the spin (or intrinsic angular-momentum) vector, is the Bohr magneton, and = is the electron-spin g-factor. Here μ {\displaystyle {\boldsymbol {\mu }}} is a negative constant multiplied by the spin , so the spin magnetic moment is antiparallel to the spin.