Ads
related to: honeycomb drawing realistic step by step
Search results
Results from the WOW.Com Content Network
Cubic honeycomb. In geometry, a honeycomb is a space filling or close packing of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions. Its dimension can be clarified as n-honeycomb for a honeycomb of n-dimensional space.
There is another honeycomb in hyperbolic 3-space called the order-4 dodecahedral honeycomb, {5,3,4}, which has only four dodecahedra per edge.These honeycombs are also related to the 120-cell which can be considered as a honeycomb in positively curved space (the surface of a 4-dimensional sphere), with three dodecahedra on each edge, {5,3,3}.
In hyperbolic geometry, a uniform honeycomb in hyperbolic space is a uniform tessellation of uniform polyhedral cells. In 3-dimensional hyperbolic space there are nine Coxeter group families of compact convex uniform honeycombs , generated as Wythoff constructions , and represented by permutations of rings of the Coxeter diagrams for each family.
The honeycomb conjecture states that hexagonal tiling is the best way to divide a surface into regions of equal area with the least total perimeter. The optimal three-dimensional structure for making honeycomb (or rather, soap bubbles) was investigated by Lord Kelvin, who believed that the Kelvin structure (or body-centered cubic lattice) is ...
The Schläfli symbol of the hexagonal tiling honeycomb is {6,3,3}. Since that of the hexagonal tiling is {6,3}, this honeycomb has three such hexagonal tilings meeting at each edge. Since the Schläfli symbol of the tetrahedron is {3,3}, the vertex figure of this honeycomb is a tetrahedron. Thus, four hexagonal tilings meet at each vertex of ...
In geometry, a hypercubic honeycomb is a family of regular honeycombs (tessellations) in n-dimensional spaces with the Schläfli symbols {4,3 ...
The Schläfli symbol of the hexagonal tiling honeycomb is {6,3,6}. Since that of the hexagonal tiling of the plane is {6,3}, this honeycomb has six such hexagonal tilings meeting at each edge. Since the Schläfli symbol of the triangular tiling is {3,6}, the vertex figure of this honeycomb is a triangular tiling. Thus, infinitely many hexagonal ...
In four-dimensional Euclidean geometry, the steriruncic tesseractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space.
Ads
related to: honeycomb drawing realistic step by step