Search results
Results from the WOW.Com Content Network
In general, the relation between the emf in a wire loop encircling a surface Σ, and the electric field E in the wire is given by = where dâ„“ is an element of contour of the surface Σ, combining this with the definition of flux =, we can write the integral form of the Maxwell–Faraday equation =
An emf is induced in a coil or conductor whenever there is change in the flux linkages. Depending on the way in which the changes are brought about, there are two types: When the conductor is moved in a stationary magnetic field to procure a change in the flux linkage, the emf is statically induced.
Faraday's law is a single equation describing two different phenomena: the motional emf generated by a magnetic force on a moving wire (see the Lorentz force), and the transformer emf generated by an electric force due to a changing magnetic field (described by the Maxwell–Faraday equation).
These induced surface charges create an opposing electric field that exactly cancels the field of the external charge throughout the interior of the metal. Therefore electrostatic induction ensures that the electric field everywhere inside a conductive object is zero. A remaining question is how large the induced charges are.
That is, the back-EMF is also due to inductance and Faraday's law, but occurs even when the motor current is not changing, and arises from the geometric considerations of an armature spinning in a magnetic field. This voltage is in series with and opposes the original applied voltage and is called "back-electromotive force" (by Lenz's law).
A current is induced in a loop of wire when it is moved toward or away from a magnetic field, or a magnet is moved towards or away from it; the direction of current depends on that of the movement. [9] In April 1820, Hans Christian Ørsted observed that an electrical current in a wire caused a nearby compass needle to move. At the time of ...
In electromagnetism, an eddy current (also called Foucault's current) is a loop of electric current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction or by the relative motion of a conductor in a magnetic field. Eddy currents flow in closed loops within conductors, in planes ...
Since the force on charges expressed by the Lorentz equation depends upon the relative motion of the magnetic field (i.e. the laboratory frame) to the conductor where the EMF is located it was speculated that in the case when the magnet rotates with the disk but a voltage still develops, the magnetic field (i.e. the laboratory frame) must ...