enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor algebra - Wikipedia

    en.wikipedia.org/wiki/Tensor_algebra

    In mathematics, the tensor algebra of a vector space V, denoted T(V) or T • (V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product.It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property ...

  3. Tensor product - Wikipedia

    en.wikipedia.org/wiki/Tensor_product

    The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.

  4. Harmonic tensors - Wikipedia

    en.wikipedia.org/wiki/Harmonic_tensors

    Here, properties of tensors, including high-rank moments as well, are considered to repeat basically features of solid spherical functions but having their own specifics. Using of invariant polynomial tensors in Cartesian coordinates , as shown in a number of recent studies, is preferable and simplifies the fundamental scheme of calculations ...

  5. Invariants of tensors - Wikipedia

    en.wikipedia.org/wiki/Invariants_of_tensors

    These are the coefficients of the characteristic polynomial of the deviator (() /), such that it is traceless. The separation of a tensor into a component that is a multiple of the identity and a traceless component is standard in hydrodynamics, where the former is called isotropic, providing the modified pressure, and the latter is called ...

  6. Chebyshev polynomials - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_polynomials

    The real part of the other side is a polynomial in cos x and sin x, in which all powers of sin x are even and thus replaceable through the identity cos 2 x + sin 2 x = 1. By the same reasoning, sin nx is the imaginary part of the polynomial, in which all powers of sin x are odd and thus, if one factor of sin x is factored out, the remaining ...

  7. Complete homogeneous symmetric polynomial - Wikipedia

    en.wikipedia.org/wiki/Complete_homogeneous...

    For any subset S of the variables appearing with nonzero exponent in the monomial, there is a contribution involving the product X S of those variables as term from e s (X 1, ..., X n), where s = #S, and the monomial ⁠ X α / X S ⁠ from h m − s (X 1, ..., X n); this contribution has coefficient (−1) s. The relation then follows from the ...

  8. Glossary of tensor theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_tensor_theory

    This means that there is no need to distinguish covariant and contravariant components, and furthermore there is no need to distinguish tensors and tensor densities. All Cartesian-tensor indices are written as subscripts. Cartesian tensors achieve considerable computational simplification at the cost of generality and of some theoretical insight.

  9. Multilinear algebra - Wikipedia

    en.wikipedia.org/wiki/Multilinear_algebra

    Multilinear algebra is the study of functions with multiple vector-valued arguments, with the functions being linear maps with respect to each argument. It involves concepts such as matrices, tensors, multivectors, systems of linear equations, higher-dimensional spaces, determinants, inner and outer products, and dual spaces.