enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Space travel under constant acceleration - Wikipedia

    en.wikipedia.org/wiki/Space_travel_under...

    Space travel under constant acceleration is a hypothetical method of space travel that involves the use of a propulsion system that generates a constant acceleration rather than the short, impulsive thrusts produced by traditional chemical rockets. For the first half of the journey the propulsion system would constantly accelerate the ...

  3. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    In classical mechanics, for a body with constant mass, the (vector) acceleration of the body's center of mass is proportional to the net force vector (i.e. sum of all forces) acting on it (Newton's second law): = =, where F is the net force acting on the body, m is the mass of the body, and a is the center-of-mass acceleration.

  4. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    Gravitational acceleration. In physics, gravitational acceleration is the acceleration of an object in free fall within a vacuum (and thus without experiencing drag ). This is the steady gain in speed caused exclusively by gravitational attraction. All bodies accelerate in vacuum at the same rate, regardless of the masses or compositions of the ...

  5. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  6. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    Equations for a falling body. A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth -bound conditions. Assuming constant acceleration g due to Earth’s gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth’s ...

  7. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    In its most general form it states the rate of change of momentum p = p(t) = mv(t) of an object equals the force F = F(x(t), v(t), t) acting on it, [13] : 1112. The force in the equation is not the force the object exerts. Replacing momentum by mass times velocity, the law is also written more famously as.

  8. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. The subject is based upon a three-dimensional Euclidean space with fixed axes, called a frame of reference. The point of concurrency of the three axes is known as the origin of the particular space.

  9. Rotation around a fixed axis - Wikipedia

    en.wikipedia.org/wiki/Rotation_around_a_fixed_axis

    The angular momentum equation can be used to relate the moment of the resultant force on a body about an axis (sometimes called torque), and the rate of rotation about that axis. Torque and angular momentum are related according to τ = d L d t , {\displaystyle {\boldsymbol {\tau }}={\frac {d\mathbf {L} }{dt}},} just as F = d p / dt in linear ...