Search results
Results from the WOW.Com Content Network
The presence of multiple domains in proteins gives rise to a great deal of flexibility and mobility, leading to protein domain dynamics. [1] Domain motions can be inferred by comparing different structures of a protein (as in Database of Molecular Motions ), or they can be directly observed using spectra [ 13 ] [ 2 ] measured by neutron spin ...
Post-translational feedback loops (PTFLs) involved in clock gene regulation have also been uncovered, often working in tandem with the TTFL model. In both mammals and plants, post-translational modifications such as phosphorylation and acetylation regulate the abundance and/or activity of clock genes and proteins.
Exon shuffling was first introduced in 1978 when Walter Gilbert discovered that the existence of introns could play a major role in the evolution of proteins. [3] It was noted that recombination within introns could help assort exons independently and that repetitive segments in the middle of introns could create hotspots for recombination to shuffle the exonic sequences.
The termination of translation requires coordination between release factor proteins, the mRNA sequence, and ribosomes. Once a termination codon is read, release factors RF-1, RF-2, and RF-3 contribute to the hydrolysis of the growing polypeptide, which terminates the chain. Bases downstream the stop codon affect the activity of these release ...
some of the protein complexes involved in initiation. Initiation of translation usually involves the interaction of certain key proteins, the initiation factors, with a special tag bound to the 5'-end of an mRNA molecule, the 5' cap, as well as with the 5' UTR. These proteins bind the small (40S) ribosomal subunit and hold the mRNA in place. [1]
Protein anabolism is the process by which proteins are formed from amino acids. It relies on five processes: amino acid synthesis, transcription , translation , post translational modifications , and protein folding .
Translation promotes transcription elongation and regulates transcription termination. Functional coupling between transcription and translation is caused by direct physical interactions between the ribosome and RNA polymerase ("expressome complex"), ribosome-dependent changes to nascent mRNA secondary structure which affect RNA polymerase activity (e.g. "attenuation"), and ribosome-dependent ...
These transcripts are decoded and converted into an amino acid sequence during protein synthesis by ribosomes. Due to the pause sites of some mRNA's, there is a disturbance caused in translation. [1] Ribosomal pausing occurs in both eukaryotes and prokaryotes. [2] [3] A more severe pause is known as a ribosomal stall. [4]