enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Batch normalization - Wikipedia

    en.wikipedia.org/wiki/Batch_normalization

    The explanation made in the original paper [1] was that batch norm works by reducing internal covariate shift, but this has been challenged by more recent work. One experiment [2] trained a VGG-16 network [5] under 3 different training regimes: standard (no batch norm), batch norm, and batch norm with noise added to each layer during training ...

  3. Hyperparameter (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_(machine...

    In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).

  4. Hyperparameter optimization - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_optimization

    A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts. [ 2 ] [ 3 ] Hyperparameter optimization determines the set of hyperparameters that yields an optimal model which minimizes a predefined loss function on a given data set . [ 4 ]

  5. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    The norm (see also Norms) can be used to approximate the optimal norm via convex relaxation. It can be shown that the L 1 {\displaystyle L_{1}} norm induces sparsity. In the case of least squares, this problem is known as LASSO in statistics and basis pursuit in signal processing.

  6. H-infinity methods in control theory - Wikipedia

    en.wikipedia.org/wiki/H-infinity_methods_in...

    The achievable H ∞ norm of the closed loop system is mainly given through the matrix D 11 (when the system P is given in the form (A, B 1, B 2, C 1, C 2, D 11, D 12, D 22, D 21)). There are several ways to come to an H ∞ controller: A Youla-Kucera parametrization of the closed loop often leads to very high-order controller.

  7. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    A conceptually simple extension of stochastic gradient descent makes the learning rate a decreasing function η t of the iteration number t, giving a learning rate schedule, so that the first iterations cause large changes in the parameters, while the later ones do only fine-tuning.

  8. Softmax function - Wikipedia

    en.wikipedia.org/wiki/Softmax_function

    In general, instead of e a different base b > 0 can be used. As above, if b > 1 then larger input components will result in larger output probabilities, and increasing the value of b will create probability distributions that are more concentrated around the positions of the largest input values.

  9. Ridge regression - Wikipedia

    en.wikipedia.org/wiki/Ridge_regression

    In many cases, this matrix is chosen as a scalar multiple of the identity matrix (=), giving preference to solutions with smaller norms; this is known as L 2 regularization. [20] In other cases, high-pass operators (e.g., a difference operator or a weighted Fourier operator ) may be used to enforce smoothness if the underlying vector is ...