Search results
Results from the WOW.Com Content Network
Triphenylphosphine (IUPAC name: triphenylphosphane) is a common organophosphorus compound with the formula P(C 6 H 5) 3 and often abbreviated to P Ph 3 or Ph 3 P. It is versatile compound that is widely used as a reagent in organic synthesis and as a ligand for transition metal complexes, including ones that serve as catalysts in organometallic chemistry.
Trifluorophosphine (PF 3) is a strong π-acid with bonding properties akin to those of the carbonyl ligand. [8] In early work, phosphine ligands were thought to utilize 3 d orbitals to form M-P pi-bonding, but it is now accepted that d-orbitals on phosphorus are not involved in bonding. [ 9 ]
Triphenylphosphite is a notable example of polyamorphism in organic compounds, namely it exists in two different amorphous forms at temperatures about 200 K. [5] One polymorphic modification of triphenyl phosphite was obtained by means of crystallization in ionic liquids.
A ligand exchange (also called ligand substitution) is a chemical reaction in which a ligand in a compound is replaced by another. Two general mechanisms are recognized: associative substitution or by dissociative substitution. A generalized example of ligand association. Associative substitution closely resembles the S N 2 mechanism in organic ...
In biochemistry and pharmacology, a ligand is a substance that forms a complex with a biomolecule to serve a biological purpose. The etymology stems from Latin ligare, which means 'to bind'. In protein-ligand binding, the ligand is usually a molecule which produces a signal by binding to a site on a target protein.
Wilkinson's catalyst is usually obtained by treating rhodium(III) chloride hydrate with an excess of triphenylphosphine in refluxing ethanol. [9] [10] [1] Triphenylphosphine serves as both a ligand and a two-electron reducing agent that oxidizes itself from oxidation state (III) to (V).
Ligand-modified versions of Stryker's reagent have been reported. By changing the ligand to, e.g., P(O-iPr) 3 the selectivity can be improved significantly. [ 8 ] In addition, Lipshutz et al., have shown that the addition of a bidentate, achiral bis-phosphine ligand on the Cu center can lead to substrate-to-ligand ratios typically on the order ...
The four phosphorus atoms are at the corners of a tetrahedron surrounding the palladium(0) center. This structure is typical for four-coordinate 18 e − complexes. [2] The corresponding complexes Ni(PPh 3) 4 and Pt(PPh 3) 4 are also well known.