Search results
Results from the WOW.Com Content Network
In the homogeneous model of two-phase flow, the slip ratio is by definition assumed to be unity (no slip). It is however experimentally observed that the velocity of the gas and liquid phases can be significantly different, depending on the flow pattern (e.g. plug flow, annular flow, bubble flow, stratified flow, slug flow, churn flow). The ...
An image depicting slug flow, where gas bubbles in a liquid 'slug' push along a larger gas bubble. In fluid mechanics, slug flow in liquid–gas two-phase flow is a type of flow pattern. Lighter, faster moving continuous fluid which contains gas bubbles - pushes along a disperse gas bubble. [1] [2] Pressure oscillations within piping can be ...
The gas will form waves on the liquid surface, which may grow to bridge the whole cross-section of the line. This creates a blockage on the gas flow, which travels as a slug through the line. Riser-based slugging, also known as severe slugging, is associated with the pipeline risers often found in offshore oil production facilities. [1]
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
In fluid mechanics, pipe flow is a type of fluid flow within a closed conduit, such as a pipe, duct or tube. It is also called as Internal flow. [1] The other type of flow within a conduit is open channel flow. These two types of flow are similar in many ways, but differ in one important aspect.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Different modes of two-phase flows. In fluid mechanics, two-phase flow is a flow of gas and liquid — a particular example of multiphase flow.Two-phase flow can occur in various forms, such as flows transitioning from pure liquid to vapor as a result of external heating, separated flows, and dispersed two-phase flows where one phase is present in the form of particles, droplets, or bubbles in ...
ISO 10628 Diagrams for the chemical and petrochemical industry specifies the classification, content, and representation of flow diagrams. It does not apply to electrical engineering diagrams. ISO 10628 consists of the following parts: Part 1: Specification of Diagrams (ISO 10628-1:2014) [1] Part 2: Graphical Symbols (ISO 10628-2:2012)