Search results
Results from the WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
One of the simpler ways of increasing the size, replacing every pixel with a number of pixels of the same color. The resulting image is larger than the original, and preserves all the original detail, but has (possibly undesirable) jaggedness. The diagonal lines of the "W", for example, now show the "stairway" shape characteristic of nearest ...
When scaling a vector graphic image, the graphic primitives that make up the image can be scaled using geometric transformations with no loss of image quality. When scaling a raster graphics image, a new image with a higher or lower number of pixels must be generated. In the case of decreasing the pixel number (scaling down), this usually ...
(* The pixel number of 6,000x4,000 ist the number of "effective pixels". The sensor usually has a few extra rows of pixels on all four sides, which explains the sensor resolution of 24.3 MPixels often stated, but no information about the exact image size available.) 6,016 4,000 24,064,000 24.1 Nikon D3300 Canon M50: 6,048 4,032 24,385,536 24.4
Next, the rotated image is created with a nearest-neighbor scaling and rotation algorithm that simultaneously shrinks the big image back to its original size and rotates the image. Finally, overlooked single-pixel details are (optionally) restored if the corresponding pixel in the source image is different and the destination pixel has three ...
Pixels per inch (or pixels per centimetre) describes the detail of an image file when the print size is known. For example, a 100×100 pixel image printed in a 2 inch square has a resolution of 50 pixels per inch. Used this way, the measurement is meaningful when printing an image.
Pixel aspect ratio 1:1 Pixel aspect ratio 2:1. A Pixel aspect ratio (often abbreviated PAR) is a mathematical ratio that describes how the width of a pixel in a digital image compared to the height of that pixel. Most digital imaging systems display an image as a grid of tiny, square pixels.
In order to effectively utilize the entire range of available LPI in a halftone system, an image selected for printing generally must have 1.5 to 2 times as many samples per inch (SPI). For instance, if the target output device is capable of printing at 100 LPI, an optimal range for a source image would be 150 to 200 PI.