Search results
Results from the WOW.Com Content Network
In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.
If diverges and converges, then necessarily =, that is, =. The essential content here is that in some sense the numbers a n {\displaystyle a_{n}} are larger than the numbers b n {\displaystyle b_{n}} .
If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]
In computer science, a computation is said to diverge if it does not terminate or terminates in an exceptional state. [1]: 377 Otherwise it is said to converge.In domains where computations are expected to be infinite, such as process calculi, a computation is said to diverge if it fails to be productive (i.e. to continue producing an action within a finite amount of time).
The product is said to converge when the limit exists and is not zero. Otherwise the product is said to diverge. A limit of zero is treated specially in order to obtain results analogous to those for infinite sums. Some sources allow convergence to 0 if there are only a finite number of zero factors and the product of the non-zero factors is ...
if C = 1 and the limit approaches strictly from above then the series diverges, otherwise the test is inconclusive (the series may diverge, converge absolutely or converge conditionally ). There are some series for which C = 1 and the series converges, e.g. ∑ 1 / n 2 {\displaystyle \textstyle \sum 1/{n^{2}}} , and there are others for which C ...
Here the series definitely converges for a > 1, and diverges for a < 1. When a = 1, the condensation transformation gives the series (). The logarithms "shift to the left". So when a = 1, we have convergence for b > 1, divergence for b < 1. When b = 1 the value of c enters.
for every ε > 0, and whether the corresponding series of the f(n) still diverges. Once such a sequence is found, a similar question can be asked with f(n) taking the role of 1/n, and so on. In this way it is possible to investigate the borderline between divergence and convergence of infinite series.