Search results
Results from the WOW.Com Content Network
There are various equivalent ways to define the determinant of a square matrix A, i.e. one with the same number of rows and columns: the determinant can be defined via the Leibniz formula, an explicit formula involving sums of products of certain entries of the matrix. The determinant can also be characterized as the unique function depending ...
In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [ 1 ] If A is a differentiable map from the real numbers to n × n matrices, then
When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and (if applicable) the determinant are often referred to simply as the Jacobian in literature. [4]
where adj(A) denotes the adjugate matrix, det(A) is the determinant, and I is the identity matrix. If det(A) is nonzero, then the inverse matrix of A is = (). This gives a formula for the inverse of A, provided det(A) ≠ 0. In fact, this formula works whenever F is a commutative ring, provided that det(A) is a unit.
Both are special cases of the Leibniz formula, which however does not yield similar memorization schemes for larger matrices. Sarrus' rule can also be derived using the Laplace expansion of a 3 × 3 {\displaystyle 3\times 3} matrix.
Thus the only alternating multilinear functions with () = are restricted to the function defined by the Leibniz formula, and it in fact also has these three properties. Hence the determinant can be defined as the only function det : M n ( K ) → K {\displaystyle \det :M_{n}(\mathbb {K} )\rightarrow \mathbb {K} } with these three properties.
The determinant of the left hand side is the product of the determinants of the three matrices. Since the first and third matrix are triangular matrices with unit diagonal, their determinants are just 1. The determinant of the middle matrix is our desired value. The determinant of the right hand side is simply (1 + v T u). So we have the result:
If n = m, the case where A and B are square matrices, ([]) = {[]} (a singleton set), so the sum only involves S = [n], and the formula states that det(AB) = det(A)det(B). For m = 0, A and B are empty matrices (but of different shapes if n > 0), as is their product AB ; the summation involves a single term S = Ø, and the formula states 1 = 1 ...