Search results
Results from the WOW.Com Content Network
In it, geometrical shapes can be made, as well as expressions from the normal graphing calculator, with extra features. [8] In September 2023, Desmos released a beta for a 3D calculator, which added features on top of the 2D calculator, including cross products, partial derivatives and double-variable parametric equations. [9]
GraphCalc is an open-source computer program that runs in Microsoft Windows and Linux that provides the functionality of a graphing calculator. GraphCalc includes many of the standard features of graphing calculators, but also includes some higher-end features: High resolution
Circulant graphs can be described in several equivalent ways: [2] The automorphism group of the graph includes a cyclic subgroup that acts transitively on the graph's vertices. In other words, the graph has an automorphism which is a cyclic permutation of its vertices. The graph has an adjacency matrix that is a circulant matrix.
In graph theory, a graph or digraph whose adjacency matrix is circulant is called a circulant graph/digraph. Equivalently, a graph is circulant if its automorphism group contains a full-length cycle. The Möbius ladders are examples of circulant graphs, as are the Paley graphs for fields of prime order.
A directed cycle graph of length 8. A directed cycle graph is a directed version of a cycle graph, with all the edges being oriented in the same direction. In a directed graph, a set of edges which contains at least one edge (or arc) from each directed cycle is called a feedback arc set.
A circle with five chords and the corresponding circle graph. In graph theory, a circle graph is the intersection graph of a chord diagram.That is, it is an undirected graph whose vertices can be associated with a finite system of chords of a circle such that two vertices are adjacent if and only if the corresponding chords cross each other.
The graph on the right illustrates an Euler spiral used as an easement (transition) curve between two given curves, in this case a straight line (the negative x axis) and a circle. The spiral starts at the origin in the positive x direction and gradually turns anticlockwise to osculate the circle.
The set of p-circular curves of degree p + k, where p may vary but k is a fixed positive integer, is invariant under inversion. [citation needed] When k is 1 this says that the set of lines (0-circular curves of degree 1) together with the set of circles (1-circular curves of degree 2) form a set which is invariant under inversion.