Search results
Results from the WOW.Com Content Network
There will be an intersection if 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1. The intersection point falls within the first line segment if 0 ≤ t ≤ 1, and it falls within the second line segment if 0 ≤ u ≤ 1. These inequalities can be tested without the need for division, allowing rapid determination of the existence of any line segment ...
This proves that all points in the intersection are the same distance from the point E in the plane P, in other words all points in the intersection lie on a circle C with center E. [5] This proves that the intersection of P and S is contained in C. Note that OE is the axis of the circle. Now consider a point D of the circle C. Since C lies in ...
The value of the two products in the chord theorem depends only on the distance of the intersection point S from the circle's center and is called the absolute value of the power of S; more precisely, it can be stated that: | | | | = | | | | = where r is the radius of the circle, and d is the distance between the center of the circle and the ...
It is an easy task to determine the intersection points of a line with a quadric (i.e. line-sphere); one only has to solve a quadratic equation. So, any intersection curve of a cone or a cylinder (they are generated by lines) with a quadric consists of intersection points of lines and the quadric (see pictures).
The intersection (red) of two disks (white and red with black boundaries). The circle (black) intersects the line (purple) in two points (red). The disk (yellow) intersects the line in the line segment between the two red points. The intersection of D and E is shown in grayish purple. The intersection of A with any of B, C, D, or E is the empty ...
Cyan line has a single point of intersection. Green line has two intersections. Yellow line lies tangent to the cylinder, so has infinitely many points of intersection. Line-cylinder intersection is the calculation of any points of intersection, given an analytic geometry description of a line and a cylinder in 3d space.
In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is the empty set if the line is parallel to the plane but outside it. Otherwise, the line cuts through the plane at a single point.
The intersection point of the associated lines k and l describes the circle. A locus can also be defined by two associated curves depending on one common parameter. If the parameter varies, the intersection points of the associated curves describe the locus. In the figure, the points K and L are fixed points on a given line m.