Search results
Results from the WOW.Com Content Network
Pyrrole was first detected by F. F. Runge in 1834, as a constituent of coal tar. [8] In 1857, it was isolated from the pyrolysate of bone. Its name comes from the Greek pyrrhos (πυρρός, "reddish, fiery"), from the reaction used to detect it—the red color that it imparts to wood when moistened with hydrochloric acid. [9]
Pyrrolidine is a base. Its basicity is typical of other dialkyl amines. [7] Relative to many secondary amines, pyrrolidine is distinctive because of its compactness, a consequence of its cyclic structure. Pyrrolidine is used as a building block in the synthesis of more complex organic compounds.
One of the name reactions involving free radicals is the Minisci reaction. It can produce 2-tert-butylpyridine upon reacting pyridine with pivalic acid, silver nitrate and ammonium in sulfuric acid with a yield of 97%. [84]
In organic chemistry, the Bohlmann–Rahtz pyridine synthesis is a reaction that generates substituted pyridines in two steps, first a condensation reaction between an enamine and an ethynylketone to form an aminodiene intermediate, which after heat-induced E/Z isomerization undergoes a cyclodehydration to yield 2,3,6-trisubstituted pyridines.
The mechanism for the synthesis of the pyrrole was investigated by V. Amarnath et al. in 1991. [4] His work suggests that the protonated carbonyl is attacked by the amine to form the hemiaminal. The amine attacks the other carbonyl to form a 2,5-dihydroxytetrahydropyrrole derivative which undergoes dehydration to give the corresponding ...
This lone pair is responsible for the basicity of these nitrogenous bases, similar to the nitrogen atom in amines. In these compounds, the nitrogen atom is not connected to a hydrogen atom. Examples of basic aromatic rings are pyridine or quinoline. Several rings contain basic as well as non-basic nitrogen atoms, e.g., imidazole and purine.
Following the addition elimination mechanism first a nucleophilic NH 2 − is added while a hydride (H −) is leaving. The reaction formally is a nucleophilic substitution of hydrogen S N H. Ciganek describes an example of an intramolecular Chichibabin reaction in which a nitrile group on a fused ring is the source of nitrogen in amination. [2]
Included are pyridine, thiophene, pyrrole, and furan. Another large class of organic heterocycles refers to those fused to benzene rings. For example, the fused benzene derivatives of pyridine, thiophene, pyrrole, and furan are quinoline, benzothiophene, indole, and benzofuran, respectively. The fusion of two benzene rings gives rise to a third ...