enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    It is differentiable everywhere except at the point x = 0, where it makes a sharp turn as it crosses the y-axis. A cusp on the graph of a continuous function. At zero, the function is continuous but not differentiable. If f is differentiable at a point x 0, then f must also be continuous at x 0. In particular, any differentiable function must ...

  3. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    Differentiable function – Mathematical function whose derivative exists Differential of a function – Notion in calculus Differentiation of integrals – Problem in mathematics

  4. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    If the last digit in the number is 5, then the result will be the remaining digits multiplied by two, plus one. For example, the number 125 ends in a 5, so take the remaining digits (12), multiply them by two (12 × 2 = 24), then add one (24 + 1 = 25). The result is the same as the result of 125 divided by 5 (125/5=25). Example. If the last ...

  5. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    the partial differential of y with respect to any one of the variables x 1 is the principal part of the change in y resulting from a change dx 1 in that one variable. The partial differential is therefore involving the partial derivative of y with respect to x 1.

  6. Time-scale calculus - Wikipedia

    en.wikipedia.org/wiki/Time-scale_calculus

    In mathematics, time-scale calculus is a unification of the theory of difference equations with that of differential equations, unifying integral and differential calculus with the calculus of finite differences, offering a formalism for studying hybrid systems.

  7. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:

  8. Strict differentiability - Wikipedia

    en.wikipedia.org/wiki/Strict_differentiability

    The simplest setting in which strict differentiability can be considered, is that of a real-valued function defined on an interval I of the real line. The function f:I → R is said strictly differentiable in a point a ∈ I if

  9. Smoothness - Wikipedia

    en.wikipedia.org/wiki/Smoothness

    The C 0 function f (x) = x for x ≥ 0 and 0 otherwise. The function g (x) = x 2 sin(1/ x) for x > 0. The function : with () = ⁡ for and () = is differentiable. However, this function is not continuously differentiable.