Search results
Results from the WOW.Com Content Network
Traversal of a singly linked list is simple, beginning at the first node and following each next link until reaching the end: node := list.firstNode while node not null (do something with node.data) node := node.next The following code inserts a node after an existing node in a singly linked list. The diagram shows how it works.
A non-blocking linked list is an example of non-blocking data structures designed to implement a linked list in shared memory using synchronization primitives: Compare-and-swap; Fetch-and-add; Load-link/store-conditional; Several strategies for implementing non-blocking lists have been suggested.
Linked list implementations, especially one of a circular, doubly-linked list, can be simplified remarkably using a sentinel node to demarcate the beginning and end of the list. The list starts out with a single node, the sentinel node which has the next and previous pointers point to itself. This condition determines if the list is empty.
Linked list can be singly, doubly or multiply linked and can either be linear or circular. Basic properties. Objects, called nodes, are linked in a linear sequence. A reference to the first node of the list is always kept. This is called the 'head' or 'front'. [3]
A singly-linked list structure, implementing a list with three integer elements. The term list is also used for several concrete data structures that can be used to implement abstract lists, especially linked lists and arrays. In some contexts, such as in Lisp programming, the term list may refer specifically to a linked list rather than an array.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
The first and last nodes of a doubly linked list for all practical applications are immediately accessible (i.e., accessible without traversal, and usually called head and tail) and therefore allow traversal of the list from the beginning or end of the list, respectively: e.g., traversing the list from beginning to end, or from end to beginning, in a search of the list for a node with specific ...
The implementation of map above on singly linked lists is not tail-recursive, so it may build up a lot of frames on the stack when called with a large list. Many languages alternately provide a "reverse map" function, which is equivalent to reversing a mapped list, but is tail-recursive.