enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    Fermat's Last Theorem states that no three positive integers (a, b, c) can satisfy the equation a n + b n = c n for any integer value of n greater than 2. (For n equal to 1, the equation is a linear equation and has a solution for every possible a and b.

  3. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.

  4. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    Two to the power of n, written as 2 n, is the number of values in which the bits in a binary word of length n can be set, where each bit is either of two values. A word, interpreted as representing an integer in a range starting at zero, referred to as an "unsigned integer", can represent values from 0 (000...000 2) to 2 n − 1 (111...111 2) inclusively.

  5. Characterizations of the exponential function - Wikipedia

    en.wikipedia.org/wiki/Characterizations_of_the...

    f is continuous at any one point (Rudin, 1976, chapter 8, exercise 6). f is increasing on any interval. For the uniqueness, one must impose some regularity condition, since other functions satisfying f ( x + y ) = f ( x ) f ( y ) {\displaystyle f(x+y)=f(x)f(y)} can be constructed using a basis for the real numbers over the rationals , as ...

  6. Lyapunov exponent - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_exponent

    In 1930 O. Perron constructed an example of a second-order system, where the first approximation has negative Lyapunov exponents along a zero solution of the original system but, at the same time, this zero solution of the original nonlinear system is Lyapunov unstable. Furthermore, in a certain neighborhood of this zero solution almost all ...

  7. Scientific notation - Wikipedia

    en.wikipedia.org/wiki/Scientific_notation

    The integer n is called the exponent and the real number m is called the significand or mantissa. [1] The term "mantissa" can be ambiguous where logarithms are involved, because it is also the traditional name of the fractional part of the common logarithm. If the number is negative then a minus sign precedes m, as in ordinary decimal notation.

  8. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    For example, to calculate the exponent 398, which has binary expansion (110 001 110) 2, we take a window of length 3 using the 2 k-ary method algorithm and calculate 1, x 3, x 6, x 12, x 24, x 48, x 49, x 98, x 99, x 198, x 199, x 398.

  9. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    The term superexponentiation was published by Bromer in his paper Superexponentiation in 1987. [3] It was used earlier by Ed Nelson in his book Predicative Arithmetic, Princeton University Press, 1986. The term hyperpower [4] is a natural combination of hyper and power, which aptly describes tetration.