Search results
Results from the WOW.Com Content Network
Download QR code; Print/export Download as PDF; Printable version; In other projects Wikidata item; Appearance. move to sidebar hide. Help ... Category: Pi algorithms.
The π-calculus belongs to the family of process calculi, mathematical formalisms for describing and analyzing properties of concurrent computation.In fact, the π-calculus, like the λ-calculus, is so minimal that it does not contain primitives such as numbers, booleans, data structures, variables, functions, or even the usual control flow statements (such as if-then-else, while).
The variable turn is set arbitrarily to a number between 0 and n−1 at the start of the algorithm. The flags variable for each process is set to WAITING whenever it intends to enter the critical section. flags takes either IDLE or WAITING or ACTIVE. Initially the flags variable for each process is initialized to IDLE.
The Gauss–Legendre algorithm is an algorithm to compute the digits of π. It is notable for being rapidly convergent, with only 25 iterations producing 45 million correct digits of π . However, it has some drawbacks (for example, it is computer memory -intensive) and therefore all record-breaking calculations for many years have used other ...
The search procedure consists of choosing a range of parameter values for s, b, and m, evaluating the sums out to many digits, and then using an integer relation-finding algorithm (typically Helaman Ferguson's PSLQ algorithm) to find a sequence A that adds up those intermediate sums to a well-known constant or perhaps to zero.
Borwein's algorithm was devised by Jonathan and Peter Borwein to calculate the value of /. This and other algorithms can be found in the book Pi and the AGM – A Study in Analytic Number Theory and Computational Complexity .
The algorithm that is presented here does not need an explicit stack; instead, it uses recursive calls to implement the stack. The algorithm is not a pure operator-precedence parser like the Dijkstra shunting yard algorithm. It assumes that the primary nonterminal is parsed in a separate subroutine, like in a recursive descent parser.
The Chudnovsky algorithm is a fast method for calculating the digits of π, based on Ramanujan's π formulae. Published by the Chudnovsky brothers in 1988, [ 1 ] it was used to calculate π to a billion decimal places.