Search results
Results from the WOW.Com Content Network
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
Anelasticity is therefore by the existence of a part of time dependent reaction, in addition to the elastic one in the material considered. It is also usually a very small fraction of the total response and so, in this sense, the usual meaning of "anelasticity" as "without elasticity" is improper in a physical sense.
The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.
This relationship is known as Hooke's law. A geometry-dependent version of the idea [a] was first formulated by Robert Hooke in 1675 as a Latin anagram, "ceiiinosssttuv". He published the answer in 1678: "Ut tensio, sic vis" meaning "As the extension, so the force", [5] [6] a linear relationship commonly referred to as Hooke's law.
Generally, at constant temperature, the bulk modulus is defined by: = (). The easiest way to get an equation of state linking P and V is to assume that K is constant, that is to say, independent of pressure and deformation of the solid, then we simply find Hooke's law.
For a complex anisotropic solid such as wood or paper, these three moduli do not contain enough information to describe its behaviour, and one must use the full generalized Hooke's law. The reciprocal of the bulk modulus at fixed temperature is called the isothermal compressibility .
A balance spring obeys Hooke's Law: the restoring torque is proportional to the angular displacement. When this property is exactly satisfied, the balance spring is said to be isochronous, and the period of oscillation is independent of the amplitude of oscillation. This is an essential property for accurate timekeeping, because no mechanical ...
However, Voigt's form does not preserve the sum of the squares, which in the case of Hooke's law has geometric significance. This explains why weights are introduced (to make the mapping an isometry). A discussion of invariance of Voigt's notation and Mandel's notation can be found in Helnwein (2001). [6]