Search results
Results from the WOW.Com Content Network
Mechanochemistry (or mechanical chemistry) is the initiation of chemical reactions by mechanical phenomena. Mechanochemistry thus represents a fourth way to cause chemical reactions, complementing thermal reactions in fluids, photochemistry, and electrochemistry. Conventionally mechanochemistry focuses on the transformations of covalent bonds ...
Chemical reaction engineering (reaction engineering or reactor engineering) is a specialty in chemical engineering or industrial chemistry dealing with chemical reactors. Frequently the term relates specifically to catalytic reaction systems where either a homogeneous or heterogeneous catalyst is present in the reactor.
Feynman's vision of nanotechnology is fundamentally mechanical, not biological." He characterized the challenges as being that of systems engineering rather than solely chemistry, and referred Smalley to Nanosystems, with its vision of mechanical control of chemical reactions with no enzymes and no reliance on solvents or thermal motion. He stated:
Chemical engineers design, construct, and operate process plants, such as these fractionating columns.. Chemical engineering is an engineering field which deals with the study of the operation and design of chemical plants as well as methods of improving production.
On the molecular level, the interlocked molecules cannot be separated without the breaking of the covalent bonds that comprise the conjoined molecules; this is referred to as a mechanical bond. Examples of mechanically interlocked molecular architectures include catenanes, rotaxanes, molecular knots, and molecular Borromean rings.
Various machine components used in mechanical engineering. Mechanical engineering is the study of physical machines that may involve force and movement. It is an engineering branch that combines engineering physics and mathematics principles with materials science, to design, analyze, manufacture, and maintain mechanical systems. [1]
The characterization technique optical microscopy showing the micron scale dendritic microstructure of a bronze alloy. Characterization, when used in materials science, refers to the broad and general process by which a material's structure and properties are probed and measured.
Some of the most common examples of transport analysis in engineering are seen in the fields of process, chemical, biological, [1] and mechanical engineering, but the subject is a fundamental component of the curriculum in all disciplines involved in any way with fluid mechanics, heat transfer, and mass transfer.