enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Strain energy density function - Wikipedia

    en.wikipedia.org/wiki/Strain_energy_density_function

    A strain energy density function or stored energy density function is a scalar-valued function that relates the strain energy density of a material to the deformation ...

  3. Neo-Hookean solid - Wikipedia

    en.wikipedia.org/wiki/Neo-Hookean_solid

    The primary, and likely most widely employed, strain-energy function formulation is the Mooney-Rivlin model, which reduces to the widely known neo-Hookean model. The strain energy density function for an incompressible Mooney—Rivlin material is = + (); =

  4. Gent hyperelastic model - Wikipedia

    en.wikipedia.org/wiki/Gent_hyperelastic_model

    The Gent hyperelastic material model [1] is a phenomenological model of rubber elasticity that is based on the concept of limiting chain extensibility. In this model, the strain energy density function is designed such that it has a singularity when the first invariant of the left Cauchy-Green deformation tensor reaches a limiting value .

  5. Mooney–Rivlin solid - Wikipedia

    en.wikipedia.org/wiki/Mooney–Rivlin_solid

    In continuum mechanics, a Mooney–Rivlin solid [1] [2] is a hyperelastic material model where the strain energy density function is a linear combination of two invariants of the left Cauchy–Green deformation tensor.

  6. Energy density Extended Reference Table - Wikipedia

    en.wikipedia.org/wiki/Energy_density_Extended...

    Energy densities table Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency % Arbitrary Antimatter: 89,875,517,874: depends on density: Deuterium–tritium fusion: 576,000,000 [1] Uranium-235 fissile isotope: 144,000,000 [1] 1,500,000,000

  7. Hyperelastic material - Wikipedia

    en.wikipedia.org/wiki/Hyperelastic_material

    A hyperelastic or Green elastic material [1] is a type of constitutive model for ideally elastic material for which the stress–strain relationship derives from a strain energy density function. The hyperelastic material is a special case of a Cauchy elastic material .

  8. von Mises yield criterion - Wikipedia

    en.wikipedia.org/wiki/Von_Mises_yield_criterion

    Strain energy density consists of two components - volumetric or dialational and distortional. Volumetric component is responsible for change in volume without any change in shape. Distortional component is responsible for shear deformation or change in shape.

  9. Arruda–Boyce model - Wikipedia

    en.wikipedia.org/wiki/Arruda–Boyce_model

    In continuum mechanics, an Arruda–Boyce model [1] is a hyperelastic constitutive model used to describe the mechanical behavior of rubber and other polymeric substances. This model is based on the statistical mechanics of a material with a cubic representative volume element containing eight chains along the diagonal directions.

  1. Related searches strain energy density 3d fea matrix formula guide sheet chart

    strain energy density formulastrain energy density 3d fea matrix formula guide sheet chart pdf
    strain energy density