enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n

  3. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    For example, 6 is highly composite because d(6)=4 and d(n)=1,2,2,3,2 for n=1,2,3,4,5 respectively. A related concept is that of a largely composite number , a positive integer that has at least as many divisors as all smaller positive integers.

  4. Divisor function - Wikipedia

    en.wikipedia.org/wiki/Divisor_function

    Divisor function σ 0 (n) up to n = 250 Sigma function σ 1 (n) up to n = 250 Sum of the squares of divisors, σ 2 (n), up to n = 250 Sum of cubes of divisors, σ 3 (n) up to n = 250. In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer.

  5. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    m is a divisor of n (also called m divides n, or n is divisible by m) if all prime factors of m have at least the same multiplicity in n. The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then ...

  6. Superior highly composite number - Wikipedia

    en.wikipedia.org/wiki/Superior_highly_composite...

    Divisor function d(n) up to n = 250 Prime-power factors. In number theory, a superior highly composite number is a natural number which, in a particular rigorous sense, has many divisors. Particularly, it is defined by a ratio between the number of divisors an integer has and that integer raised to some positive power.

  7. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer. The GCD of a and b is generally denoted gcd(a, b). [8]

  8. Hooley's delta function - Wikipedia

    en.wikipedia.org/wiki/Hooley's_delta_function

    This function measures the tendency of divisors of a number to cluster. The growth of this sequence is limited by Δ ( m n ) ≤ Δ ( n ) d ( m ) {\displaystyle \Delta (mn)\leq \Delta (n)d(m)} where d ( n ) {\displaystyle d(n)} is the number of divisors of n {\displaystyle n} .

  9. Colossally abundant number - Wikipedia

    en.wikipedia.org/wiki/Colossally_abundant_number

    Sigma function σ 1 (n) up to n = 250 Prime-power factors. In number theory, a colossally abundant number (sometimes abbreviated as CA) is a natural number that, in a particular, rigorous sense, has many divisors. Particularly, it is defined by a ratio between the sum of an integer's divisors and that integer raised to a power higher than one ...