Search results
Results from the WOW.Com Content Network
Using statistical theory, statisticians compress the information-matrix using real-valued summary statistics; being real-valued functions, these "information criteria" can be maximized. Traditionally, statisticians have evaluated estimators and designs by considering some summary statistic of the covariance matrix (of an unbiased estimator ...
In statistics, Fisher's method, [1] [2] also known as Fisher's combined probability test, is a technique for data fusion or "meta-analysis" (analysis of analyses). It was developed by and named for Ronald Fisher. In its basic form, it is used to combine the results from several independence tests bearing upon the same overall hypothesis (H 0).
In statistics, the observed information, or observed Fisher information, is the negative of the second derivative (the Hessian matrix) of the "log-likelihood" (the logarithm of the likelihood function).
In probability theory and statistics, the F-distribution or F-ratio, also known as Snedecor's F distribution or the Fisher–Snedecor distribution (after Ronald Fisher and George W. Snedecor), is a continuous probability distribution that arises frequently as the null distribution of a test statistic, most notably in the analysis of variance (ANOVA) and other F-tests.
Fisher's exact test (also Fisher-Irwin test) is a statistical significance test used in the analysis of contingency tables. [ 1 ] [ 2 ] [ 3 ] Although in practice it is employed when sample sizes are small, it is valid for all sample sizes.
In information geometry, the Fisher information metric [1] is a particular Riemannian metric which can be defined on a smooth statistical manifold, i.e., a smooth manifold whose points are probability distributions. It can be used to calculate the distance between probability distributions. [2] The metric is interesting in several aspects.
Scoring algorithm, also known as Fisher's scoring, [1] is a form of Newton's method used in statistics to solve maximum likelihood equations numerically, named after Ronald Fisher. Sketch of derivation
In statistics, Fisher consistency, named after Ronald Fisher, is a desirable property of an estimator asserting that if the estimator were calculated using the entire population rather than a sample, the true value of the estimated parameter would be obtained.