Search results
Results from the WOW.Com Content Network
The matrix vectorization operation can be written in terms of a linear sum. ... In Matlab/GNU Octave a matrix A can be vectorized by A(:).
The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.
In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix.It is a specialization of the tensor product (which is denoted by the same symbol) from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis.
MATLAB (an abbreviation of "MATrix LABoratory" [18]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms , creation of user interfaces , and interfacing with programs written in other languages.
Others, such as matrix addition, scalar multiplication, matrix multiplication, and row operations involve operations on matrix entries and therefore require that matrix entries are numbers or belong to a field or a ring. [8] In this section, it is supposed that matrix entries belong to a fixed ring, which is typically a field of numbers.
Both MATLAB and GNU Octave natively support linear algebra operations such as matrix multiplication, matrix inversion, and the numerical solution of system of linear equations, even using the Moore–Penrose pseudoinverse. [7] [8] The Nial example of the inner product of two arrays can be implemented using the native matrix multiplication operator.
For example, if a subroutine needed to perform a matrix multiplication, then the subroutine would have three nested loops. Linear algebra programs have many common low-level operations (the so-called "kernel" operations, not related to operating systems). [14] Between 1973 and 1977, several of these kernel operations were identified. [15]
In multilinear algebra, mode-m flattening [1] [2] [3], also known as matrixizing, matricizing, or unfolding, [4] is an operation that reshapes a multi-way array into a matrix denoted by [] (a two-way array). Matrixizing may be regarded as a generalization of the mathematical concept of vectorizing.