enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    Arithmetic progression. An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that arithmetic progression.

  3. Arithmetico-geometric sequence - Wikipedia

    en.wikipedia.org/wiki/Arithmetico-geometric_sequence

    v. t. e. In mathematics, an arithmetico-geometric sequence is the result of term-by-term multiplication of a geometric progression with the corresponding terms of an arithmetic progression. The n th term of an arithmetico-geometric sequence is the product of the n th term of an arithmetic sequence and the n th term of a geometric sequence. [1]

  4. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    The first block is a unit block and the dashed line represents the infinite sum of the sequence, a number that it will forever approach but never touch: 2, 3/2, and 4/3 respectively. A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying ...

  5. Faulhaber's formula - Wikipedia

    en.wikipedia.org/wiki/Faulhaber's_formula

    The result: Faulhaber's formula. Faulhaber's formula concerns expressing the sum of the p -th powers of the first n positive integers as a (p + 1)th-degree polynomial function of n. The first few examples are well known. For p = 0, we have For p = 1, we have the triangular numbers For p = 2, we have the square pyramidal numbers.

  6. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    Dirichlet's theorem on arithmetic progressions. In number theory, Dirichlet's theorem, also called the Dirichlet prime number theorem, states that for any two positive coprime integers a and d, there are infinitely many primes of the form a + nd, where n is also a positive integer. In other words, there are infinitely many primes that are ...

  7. 1 + 2 + 3 + 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    Ramanujan summation is a method to isolate the constant term in the Euler–Maclaurin formula for the partial sums of a series. For a function f , the classical Ramanujan sum of the series ∑ k = 1 ∞ f ( k ) {\displaystyle \textstyle \sum _{k=1}^{\infty }f(k)} is defined as

  8. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    A geometric derivation of a geometric series sum formula for |r| < 1. [6] (TOP) Represent the first n+1 terms of S for a = 1, r = 1/2 as areas of overlapping similar triangles. The area of the largest (red) triangle is the first term of the series. The area of the second biggest overlapping is the second term.

  9. Summation - Wikipedia

    en.wikipedia.org/wiki/Summation

    t. e. In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total. Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.