enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Resultant force - Wikipedia

    en.wikipedia.org/wiki/Resultant_force

    Graphical placing of the resultant force. In physics and engineering, a resultant force is the single force and associated torque obtained by combining a system of forces and torques acting on a rigid body via vector addition. The defining feature of a resultant force, or resultant force-torque, is that it has the same effect on the rigid body ...

  3. Circular mean - Wikipedia

    en.wikipedia.org/wiki/Circular_mean

    The circular mean is one of the simplest examples of directional statistics and of statistics of non-Euclidean spaces. This computation produces a different result than the arithmetic mean, with the difference being greater when the angles are widely distributed. For example, the arithmetic mean of the three angles 0°, 0°, and 90° is (0 ...

  4. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The resultant vector is invariant of rotation of basis. Due to the dependence on handedness, the cross product is said to be a pseudovector. In connection with the cross product, the exterior product of vectors can be used in arbitrary dimensions (with a bivector or 2-form result) and is independent of the orientation of the space.

  5. Aerodynamic force - Wikipedia

    en.wikipedia.org/wiki/Aerodynamic_force

    Aerodynamic force. The aerodynamic force is the resultant vector from adding the lift vector, perpendicular to the flow direction, and the drag vector, parallel to the flow direction. Forces on an aerofoil. In fluid mechanics, an aerodynamic force is a force exerted on a body by the air (or other gas) in which the body is immersed, and is due ...

  6. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    The resulting vector is sometimes called the resultant vector of a and b. The addition may be represented graphically by placing the tail of the arrow b at the head of the arrow a, and then drawing an arrow from the tail of a to the head of b. The new arrow drawn represents the vector a + b, as illustrated below: [7] The addition of two vectors ...

  7. Stress resultants - Wikipedia

    en.wikipedia.org/wiki/Stress_resultants

    Stress resultants are defined as integrals of stress over the thickness of a structural element. The integrals are weighted by integer powers the thickness coordinate z (or x3). Stress resultants are so defined to represent the effect of stress as a membrane force N (zero power in z), bending moment M (power 1) on a beam or shell (structure).

  8. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    Lagrangian. [edit] Instead of forces, Lagrangian mechanics uses the energies in the system. The central quantity of Lagrangian mechanics is the Lagrangian, a function which summarizes the dynamics of the entire system. Overall, the Lagrangian has units of energy, but no single expression for all physical systems.

  9. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    When two forces act on a point particle, the resulting force, the resultant (also called the net force), can be determined by following the parallelogram rule of vector addition: the addition of two vectors represented by sides of a parallelogram, gives an equivalent resultant vector that is equal in magnitude and direction to the transversal ...