Search results
Results from the WOW.Com Content Network
Conversely, ozone depletion represents a radiative forcing of the climate system. There are two opposing effects: Reduced ozone causes the stratosphere to absorb less solar radiation, thus cooling the stratosphere while warming the troposphere; the resulting colder stratosphere emits less long-wave radiation downward, thus cooling the troposphere.
Ozone depletion is not a primary cause of climate change, however there exists a physical science connection between the two phenomena. The Earth's atmospheric ozone has two major effects on the Earth's temperature balance. Firstly, it absorbs solar ultraviolet radiation, leading to the heating of the stratosphere.
Ozone depletion, on the other hand, is a radiative forcing of the climate system. Two opposite effects exist: Reduced ozone causes the stratosphere to absorb less solar radiation, cooling it while warming the troposphere; as a result, the stratosphere emits less long-wave radiation downward, cooling the troposphere.
The ozone layer has little effect on the longer UV wavelengths called UV-A (315–400 nm), but this radiation does not cause sunburn or direct DNA damage. While UV-A probably does cause long-term skin damage in certain humans, it is not as dangerous to plants and to the health of surface-dwelling organisms on Earth in general (see ultraviolet ...
Air pollution can cause diseases, allergies, and even death; it can also cause harm to animals and crops and damage the natural environment (for example, climate change, ozone depletion or habitat degradation) or built environment (for example, acid rain). [3] Air pollution can occur naturally or be caused by human activities. [4]
Ozone (O3) is a trace gas which has been of concern because of its unique dual role in different layers of the lower atmosphere. [1] Apart from absorbing UV-B radiation and converting solar energy into heat in the stratosphere, ozone in the troposphere provides greenhouse effect and controls the oxidation capacity of the atmosphere. [1]
Coronas are efficient producers of ozone in the air. A positive corona generates much less ozone than the corresponding negative corona, as the reactions which produce ozone are relatively low-energy. Therefore, the greater number of electrons of a negative corona leads to increased production.
The Scientific Assessment of Ozone Depletion is a sequence of reports sponsored by WMO/UNEP. The most recent report is from 2018. The most recent report is from 2018. The reports were set up to inform the Montreal Protocol and amendments about ozone depletion .