Search results
Results from the WOW.Com Content Network
Hybrid electromagnetic (HEM) modes, both the electric and magnetic fields have a component in the longitudinal direction. They can be analysed as a linear superposition of the corresponding TE and TM modes. [4]: 550 HE modes, hybrid modes in which the TE component dominates. EH modes, hybrid modes in which the TM component dominates.
A branch of physics that studies atoms as isolated systems of electrons and an atomic nucleus. Compare nuclear physics. atomic structure atomic weight (A) The sum total of protons (or electrons) and neutrons within an atom. audio frequency A periodic vibration whose frequency is in the band audible to the average human, the human hearing range.
Mode conversion occurs when a wave encounters an interface between materials of different impedances and the incident angle is not normal to the interface. [1] Thus, for example, if a longitudinal wave from a fluid (e.g., water or air) strikes a solid (e.g., steel plate), it is usually refracted and reflected as a function of the angle of incidence, but if some of the energy causes particle ...
Unguided transmission media are methods that allow the transmission of data without the use of physical means to define the path it takes. Examples of this include microwave, radio or infrared. Unguided media provide a means for transmitting electromagnetic waves but do not guide them; examples are propagation through air, vacuum and seawater.
A transverse mode of electromagnetic radiation is a particular electromagnetic field pattern of the radiation in the plane perpendicular (i.e., transverse) to the radiation's propagation direction. Transverse modes occur in radio waves and microwaves confined to a waveguide, and also in light waves in an optical fiber and in a laser's optical ...
They were developed by Oliver Heaviside who created the transmission line model, and are based on Maxwell's equations. Schematic representation of the elementary component of a transmission line. The transmission line model is an example of the distributed-element model. It represents the transmission line as an infinite series of two-port ...
Transport phenomena have wide application. For example, in solid state physics, the motion and interaction of electrons, holes and phonons are studied under "transport phenomena". Another example is in biomedical engineering, where some transport phenomena of interest are thermoregulation, perfusion, and microfluidics.
This is because metals have essentially a better approximation to the free electron model, i.e. metals do not have complex band structures, electrons behave essentially as free particles and where, in the case of metals, the effective number of de-localized electrons is essentially the same as the valence number. [Ashcroft & Mermin 5]