Search results
Results from the WOW.Com Content Network
Concerning general linear maps, linear endomorphisms, and square matrices have some specific properties that make their study an important part of linear algebra, which is used in many parts of mathematics, including geometric transformations, coordinate changes, quadratic forms, and many other parts of mathematics.
The interpolation polynomial passes through all four control points, and each scaled basis polynomial passes through its respective control point and is 0 where x corresponds to the other three control points. In numerical analysis, the Lagrange interpolating polynomial is the unique polynomial of lowest degree that interpolates a given set of ...
Amitsur–Levitzki theorem (linear algebra) Binomial inverse theorem (linear algebra) Birkhoff–Von Neumann theorem (linear algebra) Bregman–Minc inequality (discrete mathematics) Cauchy-Binet formula (linear algebra) Cayley–Hamilton theorem (Linear algebra) Dimension theorem for vector spaces (vector spaces, linear algebra)
The case where the system dynamics are described by a set of linear differential equations and the cost is described by a quadratic function is called the LQ problem. One of the main results in the theory is that the solution is provided by the linear–quadratic regulator (LQR), a feedback controller whose equations are given below.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Differential geometry has been widely used as a tool for generalizing well-known linear control concepts to the nonlinear case, as well as showing the subtleties that make it a more challenging problem. Control theory has also been used to decipher the neural mechanism that directs cognitive states. [19]
The phrase H ∞ control comes from the name of the mathematical space over which the optimization takes place: H ∞ is the Hardy space of matrix-valued functions that are analytic and bounded in the open right-half of the complex plane defined by Re(s) > 0; the H ∞ norm is the supremum singular value of the matrix over that space.
Algebra is the branch of mathematics that studies certain abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication.