enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Scientific notation - Wikipedia

    en.wikipedia.org/wiki/Scientific_notation

    Any real number can be written in the form m × 10 ^ n in many ways: for example, 350 can be written as 3.5 × 10 2 or 35 × 10 1 or 350 × 10 0. In normalized scientific notation (called "standard form" in the United Kingdom), the exponent n is chosen so that the absolute value of m remains at least one but less than ten ( 1 ≤ | m | < 10 ).

  3. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    In these cases, iterated exponential notation is used to express them in base 10. The values containing a decimal point are approximate. Usually, the limit that can be calculated in a numerical calculation program such as Wolfram Alpha is 3↑↑4, and the number of digits up to 3↑↑5 can be expressed.

  4. Positional notation - Wikipedia

    en.wikipedia.org/wiki/Positional_notation

    Digits to the right of it are multiplied by 10 raised to a negative power or exponent. The first position to the right of the separator indicates 10 −1 (0.1), the second position 10 −2 (0.01), and so on for each successive position. As an example, the number 2674 in a base-10 numeral system is: (2 × 10 3) + (6 × 10 2) + (7 × 10 1) + (4 ...

  5. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    One of the main properties of multiplication is the commutative property, which states in this case that adding 3 copies of 4 gives the same result as adding 4 copies of 3: 4 × 3 = 3 + 3 + 3 + 3 = 12. {\displaystyle 4\times 3=3+3+3+3=12.}

  6. Negative base - Wikipedia

    en.wikipedia.org/wiki/Negative_base

    The common names for negative-base positional numeral systems are formed by prefixing nega-to the name of the corresponding positive-base system; for example, negadecimal (base −10) corresponds to decimal (base 10), negabinary (base −2) to binary (base 2), negaternary (base −3) to ternary (base 3), and negaquaternary (base −4) to ...

  7. Negative number - Wikipedia

    en.wikipedia.org/wiki/Negative_number

    The laws of arithmetic for negative numbers ensure that the common-sense idea of an opposite is reflected in arithmetic. For example, − ‍ (−3) = 3 because the opposite of an opposite is the original value. Negative numbers are usually written with a minus sign in front. For example, −3 represents a negative quantity with a magnitude of ...

  8. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    As there is zero X n+1 or X −1 in (1 + X) n, one might extend the definition beyond the above boundaries to include () = when either k > n or k < 0. This recursive formula then allows the construction of Pascal's triangle , surrounded by white spaces where the zeros, or the trivial coefficients, would be.

  9. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    For example, 10 3 = 1000 and 104 = 0.0001. Exponentiation with base 10 is used in scientific notation to denote large or small numbers. For instance, 299 792 458 m/s (the speed of light in vacuum, in metres per second ) can be written as 2.997 924 58 × 10 8 m/s and then approximated as 2.998 × 10 8 m/s .