enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Antipodal point - Wikipedia

    en.wikipedia.org/wiki/Antipodal_point

    The antipodal map preserves orientation (is homotopic to the identity map) [2] when is odd, and reverses it when is even. Its degree is ( − 1 ) n + 1 . {\displaystyle (-1)^{n+1}.} If antipodal points are identified (considered equivalent), the sphere becomes a model of real projective space .

  3. Homotopy - Wikipedia

    en.wikipedia.org/wiki/Homotopy

    For example, a map from the unit circle to any space is null-homotopic precisely when it can be continuously extended to a map from the unit disk to that agrees with on the boundary. It follows from these definitions that a space X {\displaystyle X} is contractible if and only if the identity map from X {\displaystyle X} to itself—which is ...

  4. Retraction (topology) - Wikipedia

    en.wikipedia.org/wiki/Retraction_(topology)

    the inclusion, a retraction is a continuous map r such that =, that is, the composition of r with the inclusion is the identity of A. Note that, by definition, a retraction maps X onto A. A subspace A is called a retract of X if such a retraction exists. For instance, any non-empty space retracts to a point in the obvious way (any constant map ...

  5. Degree of a continuous mapping - Wikipedia

    en.wikipedia.org/wiki/Degree_of_a_continuous_mapping

    The degree of a map is a homotopy invariant; moreover for continuous maps from the sphere to itself it is a complete homotopy invariant, i.e. two maps ,: are homotopic if and only if ⁡ = ⁡ (). In other words, degree is an isomorphism between [ S n , S n ] = π n S n {\displaystyle \left[S^{n},S^{n}\right]=\pi _{n}S^{n}} and Z {\displaystyle ...

  6. Homotopy group - Wikipedia

    en.wikipedia.org/wiki/Homotopy_group

    Two maps , are called homotopic relative to A if they are homotopic by a basepoint-preserving homotopy : [,] such that, for each p in and t in [,], the element (,) is in A. Note that ordinary homotopy groups are recovered for the special case in which A = { x 0 } {\displaystyle A=\{x_{0}\}} is the singleton containing the base point.

  7. Homotopy groups of spheres - Wikipedia

    en.wikipedia.org/wiki/Homotopy_groups_of_spheres

    The null homotopic class acts as the identity of the group addition, and for X equal to S n (for positive n) — the homotopy groups of spheres — the groups are abelian and finitely generated. If for some i all maps are null homotopic, then the group π i consists of one element, and is called the trivial group.

  8. Fundamental group - Wikipedia

    en.wikipedia.org/wiki/Fundamental_group

    Indeed, both above composites are homotopic, for example, to the loop that traverses all three loops ,, with triple speed. The set of based loops up to homotopy, equipped with the above operation therefore does turn π 1 ( X , x 0 ) {\displaystyle \pi _{1}(X,x_{0})} into a group.

  9. Homotopy theory - Wikipedia

    en.wikipedia.org/wiki/Homotopy_theory

    For example, the category of (reasonable) topological spaces has a structure of a model category where a weak equivalence is a weak homotopy equivalence, a cofibration a certain retract and a fibration a Serre fibration. [20] Another example is the category of non-negatively graded chain complexes over a fixed base ring. [21