Ad
related to: recursive formula for arithmetic sequence examples
Search results
Results from the WOW.Com Content Network
For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is and the common difference of successive members is , then the -th term of the sequence is given by
A recursive step — a set of rules that reduces all successive cases toward the base case. For example, the following is a recursive definition of a person's ancestor. One's ancestor is either: One's parent (base case), or; One's parent's ancestor (recursive step). The Fibonacci sequence is another classic example of recursion: Fib(0) = 0 as ...
All arithmetic progressions, all ... not all sequences are constant-recursive; for example, ... Despite satisfying a simple local formula, a constant-recursive ...
All these sequences may be viewed as generalizations of the Fibonacci sequence. In particular, Binet's formula may be generalized to any sequence that is a solution of a homogeneous linear difference equation with constant coefficients. Some specific examples that are close, in some sense, to the Fibonacci sequence include:
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value
An example of a primitive recursive programming language is one that contains basic arithmetic operators (e.g. + and −, or ADD and SUBTRACT), conditionals and comparison (IF-THEN, EQUALS, LESS-THAN), and bounded loops, such as the basic for loop, where there is a known or calculable upper bound to all loops (FOR i FROM 1 TO n, with neither i ...
"Recursive algorithms are particularly appropriate when the underlying problem or the data to be treated are defined in recursive terms." [27] The examples in this section illustrate what is known as "structural recursion". This term refers to the fact that the recursive procedures are acting on data that is defined recursively.
Ad
related to: recursive formula for arithmetic sequence examples