Search results
Results from the WOW.Com Content Network
A cut C = (S, T) is a partition of V of a graph G = (V, E) into two subsets S and T. The cut-set of a cut C = (S, T) is the set {(u, v) ∈ E | u ∈ S, v ∈ T} of edges that have one endpoint in S and the other endpoint in T. If s and t are specified vertices of the graph G, then an s – t cut is a cut in which s belongs to the set S and t ...
An example of a maximum cut. In a graph, a maximum cut is a cut whose size is at least the size of any other cut. That is, it is a partition of the graph's vertices into two complementary sets S and T, such that the number of edges between S and T is as large as possible. Finding such a cut is known as the max-cut problem.
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
The cut surface or vertex figure is thus a spherical polygon marked on this sphere. One advantage of this method is that the shape of the vertex figure is fixed (up to the scale of the sphere), whereas the method of intersecting with a plane can produce different shapes depending on the angle of the plane.
A cut whose cut-set has minimum total weight, possibly restricted to cuts that separate a designated pair of vertices; they are characterized by the max-flow min-cut theorem. minor A graph H is a minor of another graph G if H can be obtained by deleting edges or vertices from G and contracting edges in G.
Let S be an (a,b)-separator, that is, a vertex subset that separates two nonadjacent vertices a and b. Then S is a minimal (a,b)-separator if no proper subset of S separates a and b. More generally, S is called a minimal separator if it is a minimal separator for some pair (a,b) of nonadjacent vertices.
Multi-colored vertices are cut vertices, and thus belong to multiple biconnected components. In graph theory, a biconnected component or block (sometimes known as a 2-connected component) is a maximal biconnected subgraph. Any connected graph decomposes into a tree of biconnected components called the block-cut tree of the graph.
The dotted line in red represents a cut with three crossing edges. The dashed line in green represents one of the minimum cuts of this graph, crossing only two edges. [1] In graph theory, a minimum cut or min-cut of a graph is a cut (a partition of the vertices of a graph into two disjoint subsets) that is minimal in some metric.